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Preface

Before you work through this book you might think that systems like Pandora, Amazon's 
recommendations, and automatic data mining for terrorists, must be very complex and the 
math behind the algorithms must be extremely complex requiring a PhD to understand. You 
might think the people who work on developing these systems are like rocket scientists. One 
goal I have for this book is to pull back this curtain of complexity and show some of the 
rudimentary methods involved. Granted there are super-smart people at Google, the 
National Security Agency and elsewhere developing amazingly complex algorithms, but for 
the most part data mining relies on easy-to-understand principles. Before you start the book 
you might think data mining is pretty amazing stuff. By the end of the book, I hope you will 
be able to say nothing special.

The Japanese characters above, Shoshin, represent the concept of Beginner's Mind—the idea 
of having an open mind that is eager to explore possibilities. Most of us have heard some 
version of the following story (possibly from Bruce Lee's Enter the Dragon). A professor is 
seeking enlightenment and goes to a wise monk for spiritual direction. The professor 
dominates the discussion outlining everything he has learned in his life and summarizing 
papers he has written. The monk asks tea? and begins to pour tea into the professor's cup. 
And continues to pour, and continues to pour, until the tea over pours the teacup, the table, 
and spills onto the floor. What are you doing? the professor shouts.  Pouring tea the monk 
says and continues: Your mind is like this teacup. It is so filled with ideas that nothing else 
will go in. You must empty your mind before we can begin. 
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If you continue this simple practice every day, you 
will obtain some wonderful power. Before you 
attain it, it is something wonderful, but after you 
attain it, it is nothing special.

   Shunryu Suzuki
   Zen Mind, Beginner's Mind.



To me, the best programmers are empty cups, who constantly explore new technology 
(noSQL, node-js, whatever) with open minds. Mediocre programmers have surrounded their 
minds with cities of delusion—C++ is good, Java is bad, PHP is the only way to do web 
programming, MySQL is the only database to consider. My hope is that you will find some of 
the ideas in this book valuable and I ask that you keep a beginner's mind when reading it. As 
Shunryu Suzuki says:

In the beginner's mind there are many possibilities,

In the expert's mind there are few.
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Chapter 1 The Intro

Intro to data mining 
& how to use this book

Imagine life in a small American town 150 years ago. Everyone knows one another. A crate of 
fabric arrives at the general store. The clerk notices that the pattern of a particular bolt would  
highly appeal to Mrs. Clancey because he knows that she likes bright floral patterns and 
makes a mental note to show it to her next time she comes to the store. Chow Winkler 
mentions to Mr. Wilson, the saloon keeper, that he is thinking of selling his spare Remington 
rifle. Mr. Wilson mentions that information to Bud Barclay, who he knows is looking for a 
quality rifle. Sheriff Valquez and his deputies know that Lee Pye is someone to keep an eye on  
as he likes to drink, has a  short temper, and is strong. Life in a small town 100 years ago was 
all about connections. 

 



People knew your likes and dislikes, your health, the state of your marriage. For better or 
worse, it was a personalized experience. And this highly personalized life in the community 
was true throughout most of the world.

Let's jump ahead one hundred years to the 1960s. Personalized interactions are less likely but  
they are still present. A regular coming into a local bookstore might be greeted with "The new  
James Michener is in"-- the clerk knowing that the regular loves James Michener books. Or 
the clerk might recommend to the regular The Conscience of a Conservative by Barry 
Goldwater, because the clerk knows the regular is a staunch conservative. A regular customer  
comes into a diner and the waitress says "The usual?"

Even today there are pockets of personalization.  I go to my local coffee shop in Mesilla and 
the barista says "A venti latte with an extra shot?" knowing that is what I get every morning. I 
take my standard poodle to the groomers and the groomer doesn't need to ask what style of 
clip I want. She knows I like the no frills sports clip with the German style ears. 

But things have changed since the small towns of 100 years ago. Large grocery stores and big 
box stores replaced neighborhood grocers and other merchants  At the start of this change 
choices were limited. Henry Ford once said  "Any customer can have a car painted any color 
that he wants so long as it is black." The record store carried a limited number of records; the 
bookstore carried a limited number of books. Want ice cream? The choices were vanilla, 
chocolate, and maybe strawberry. Want a washing machine? In 1950 you had two choices at 
the local Sears: the standard model for $55 or the deluxe for $95.

Welcome to the 21st century
In the 21st century those limited choices are a thing of the past. I want to buy some music? 
iTunes has some 11 million tracks to choose from. 11 million!  They have sold 16 billion tracks 
as of October 2011. I need more choices? I can go to Spotify which has over 15 million songs. 

I want to buy a book? Amazon has over 2 million titles to chose from.
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I  want to watch a video? There are plenty of choices:

I want to buy a laptop? When I type in laptop into the Amazon search box I get 3,811 results

I type in rice cooker and get over 1,000 possibilities. 

CONTENT BASED FILTERING & CLASSIFICATION

1-3

over 100,000 titles
nearly 50,000 titles

over 100,000 titles

In the near future there will be even more 
choice—billions of music tracks online—a 
wide variety of video—products that can be  
customized with 3D printing.



Finding Relevant Stuff
The problem is finding relevant stuff. Amid all those 11 million tracks on iTunes, there 
are probably quite a number that I will absolutely love, but how do I find them. I want to 
watch a streaming movie from Netflix tonight, what should I watch. I want to download a 
movie using P2P, but which movie. And the problem is getting worse. Every minute 
terabytes of media are added to the net. Every minute 100 new files are available on 
usenet. Every minute 24 hours of video is uploaded to YouTube. Every hour 180 new 
books are published.  Every day there are more and more options of stuff to buy in the 
real world. It gets more and more difficult to find the relevant stuff in this ocean of 
possibilities. 

If you are a producer of media—say Zee Avi from Malaysia—the danger isn't someone 
downloading your music illegally—the danger is obscurity.

But how to find stuff?
Years ago, in that small town, our friends helped us find  
stuff. That bolt of fabric that would be perfect for us; that  
new novel at the bookstore; that new 33 1/3 LP at the 
record store. Even today we rely on friends to help us 
find some relevant stuff. 

We used experts to help us find stuff. Years ago Consumer Reports could evaluate all the 
washing machines sold—all 20 of them—or all the rice cookers sold-- all 10 of them and make 
recommendations. Today there are hundreds of different rice cookers available on Amazon 
and it is unlikely that a single expert source can rate all of them. Years ago, Roger Ebert 
would review virtually all the movies available. Today about 25,000 movies are made each 
year worldwide. Plus, we now have access to video from a variety of sources. Roger Ebert, or 
any single expert, cannot review all the movies that are available to us.

We also use the thing itself to help us find stuff. For example, I owned a Sears washing 
machine that lasted 30 years, I am going to buy another Sears washing machine. I liked one 
album by the Beatles—I will buy another thinking chances are good I will like that too. 
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These methods of finding relevant stuff—friends, experts, the thing itself—are still present 
today but we need some computational help to transform them into the 21st century where 
we have billions of choices. In this book we will explore methods of aggregating people's likes 
and dislikes, their purchasing history, and other data—exploiting the power of social net 
(friends)—to help us mine for relevant stuff. We will examine methods that use attributes of 
the thing itself. For example, I like the band Phoenix. The system might know attributes of 
Phoenix—that it uses electric rock instrumentation, has punk influences, has a subtle use of 
vocal harmony. It might recommend to me a similar band that has similar attributes, for 
example, The Strokes.

It’s just not stuff...
Data mining is just not about recommending stuff to us, or having merchants sell more stuff. 
Consider these examples.

The mayor of that small town of 100 years ago, knew everybody. When he ran for re-election 
he knew how to tailor what he said to each individual.

CONTENT BASED FILTERING & CLASSIFICATION
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These methods of finding relevant stuff—
friends, experts, the thing itself—are still 
present today but we need some computational 
help to transform them into the 21st century 
where we have billions of choices. 

Martha, I know you are 
interested in schools and I will do 
everything in my power to bring 

another teacher to town.

John, how is your bakery 
doing? I promise to get more 
parking in your area of downtown.



My father belonged to the United Auto Workers' Union. Around election time I remember 
the union representative coming to our house to remind my father what candidates to vote 
for: 

Hey Syl, how are the wife and kids? … Now let me tell you why you 
should vote for Frank Zeidler, the Socialist candidate for mayor...  

This individualized political message changed to the homogenous ads 
during the rise of television. Everyone got the exact same message. A 
good example of this is the famous Daisy television ad in support of 

Lyndon Johnson ( a young girl pulling petals off a daisy while a 
nuclear bomb goes off in the background). Now, with elections 
determined by small margins and the growing use of data mining, 
individualization has returned. You are interested in a women's 
right to choose? You might get a robo-call directed at that very 
issue.

The sheriff of that small town knew 
who the trouble makers were. Now, 
threats seem to be hidden, terrorists 
can be anywhere. On October 11, 
2001 the US government passed the 
USA Patriot Act (short for Uniting 
and Strengthening America by 
Providing Appropriate Tools 
Required to Intercept and Obstruct 
Terrorism). In part this bill enables 
investigators to obtain records for a 
variety of sources including libraries 
(what books we read), hotels (who 
stayed where and for how long), credit card companies, toll roads registering that we passed 
by. For the most part the government uses private companies to keep data on us. Companies 
like Seisint have data on almost all of us, photos of us, where we live, what we drive, our 
income, our buying behavior, our friends. Seisint owns supercomputers that  use data mining  
techniques to make predictions about people. Their product by the way is called...
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 The Matrix.

Data Mining Extends what we already do!
Stephen Baker begins his book The Numerati this way:

Imagine you are in a café, perhaps the noisy one I'm sitting in at this 
moment. A  young women at a table to your right is typing on her laptop. You 
turn your head and look at her screen. She surfs the Internet. You watch.

Hours pass. She reads an online paper. You notice that she reads three 
articles about China. She scouts movies for Friday night and watches the 
trailer for Kung Fu Panda. She clicks on an ad that promises to connect her to 
old high school classmates. You sit there taking notes. With each passing 
minute, you're learning more about her. Now imagine that you could watch 
150 million people surfing at the same time.

Data mining is focused on finding patterns in data. At the small scale, we are expert at 
building mental models and finding patterns. I want to watch a movie tonight with my wife. I 
have a mental model of what she likes. I know she dislikes violent movies (she didn't like 
District 9 for that reason). She likes movies by Charlie Kaufman. I can use that mental model 
I have of her movie preferences to predict what movies she may or may not like. 

CONTENT BASED FILTERING & CLASSIFICATION
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A friend is visiting from Europe. I know she is a vegetarian and I can use that information to 
predict she would not like the local rib joint. People are good at making models and making 
predictions. Data mining expands this ability and enables us to handle large quantities of 
information—the 150 million people in the Baker quote above.  It enables the Pandora Music 
Service to tailor a music station to your specific musical preferences. It enables Netflix to 
make specific personalized movie recommendations for you. 

Tera-mining is not something from Starcraft II
At the end of the 20th century a million word data set was 
considered large. When I was a graduate student in the 1990s 
(yes, I am that ancient) I worked as a programmer for a year 
on the Greek New Testament. It's only around 200,000 
words but the analysis was too large to fit into the 
mainframe's memory necessitating spooling results off to 
magnetic tapes, which I had to request to be mounted.   
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The book resulting from this work is the Analytical Greek 
New Testament by Timothy and Barbara Friberg 
(available on Amazon). I was just one of three 
programmers on this project done at the University of 
Minnesota.



Today it is not unusual to be doing data mining on terabytes of information. Google has over 
5 petabytes (that's 5,000 
terabytes) of web data. In 2006 
Google released a dataset to the 
research community based on 
one trillion words. The National 
Security Agency has call records 
for trillions of phone calls. 
Acxiom, a company that collects 
information (credit card 
purchases, telephone records, 
medical records, car 
registrations, etc) on 200 
million adults in the US, has 
amassed over 1 petabyte of 
data. 

Robert O'Harrow, Jr., author of No Place to Hide, in an effort to help us grasp how much 
information is 1 petabyte says it is the equivalent of 50,000 miles of stacked King James 
Bibles. I frequently  drive 2,000 between New Mexico and Virginia. When I try to imagine 
bibles stacked along the entire way that seems like an unbelievable amount of data. 

CONTENT BASED FILTERING & CLASSIFICATION
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The Library of Congress has around 20 terabytes of text. You could store the entire collection 
of the Library of Congress on a few thousand dollar's worth of hard drives! In contrast, 
Walmart has over 570 terabytes of data. All this data just doesn't sit there—it is constantly 
being mined, new associations made, patterns identified. Tera-mining. 

Throughout this book we will be dealing with small datasets. It's good thing. We don't want 
our algorithm to run for a week only to discover we have some error in our logic. The biggest 
dataset we will use is under 100MB; the smallest just tens of lines of data. 

The format of the book.
This book follows a learn-by-doing approach. Instead of passively reading the book, I 
encourage you to work through the exercises and experiment with the Python code I provide. 
Experimenting around, code hacking,  and trying out methods with different data sets is the 
key to really gaining an understanding for the techniques. 

I try to strike a balance between hands-on, nuts-and-bolts discussion of Python data mining 
code that you can use and modify, and the theory behind the data mining techniques. To try 
to prevent the brain freeze associated with reading theory, math, and Python code, I tried to 
stimulate a different part of your brain by adding drawings and pictures. 
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Peter Norvig, Director of Research at Google, had this to say in his great Udacity course. 
Design of a Computer Program:

I couldn’t agree more!

This book is not a comprehensive textbook on data 
mining techniques. There are textbooks, like 
Introduction to Data Mining by Pang-Ning Tan, 
Michael Steinbach, and Vipin Kumar that provide 
significantly better coverage of data mining methods 
and provide more in-depth analysis of the mathematic 
underpinnings of these methods. This book—the one 
you are holding—is intended more as a quick, gritty, 
hands-on introduction designed to give you a basic 
foundation of data mining techniques. Later, you can 
pick up a more comprehensive book to fill in any gaps 
that you wish.

CONTENT BASED FILTERING & CLASSIFICATION
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“I’ll show you and discuss my solution. It’s important to note, there is 
more than one way to approach a problem. And I don’t mean that my 
solution is the ONLY way or the BEST way. My solutions are there to 
help you learn a style and some techniques for programming. If you 
solve problems a different way, that’s fine. Good for you.

All the learning that goes on happens inside of your head. Not inside of 
my head. So what’s important is that you understand the relation 
between your code and my code, that you get the right answer by 
writing out the solution yourself and then you can examine my code and 
maybe pick out some pointers and techniques that you can use later.”



Part of the usefulness of this book is the accompanying Python code and the datasets. I think 
the inclusion of both these make it easier for the learner to understand key concepts, but at 
the same time, not shoe-horn the learner into a scripted exploration. 

What will you be able to do when you finish this book?
When you finish this book you will be able to design and implement recommendation 
systems for websites using Python or any language you know. For example, when you look at 
a product on Amazon, or a tune on Pandora, you are presented with a list of 
recommendations (You might also like …). You will learn how to develop such systems. In 
addition, the book should provide you with the necessary vocabulary to enable you to work in  
development teams on data mining efforts.

As part of this goal, this book should help shed the mystery of recommendation systems,  
terrorist identification systems, and other data mining systems. You should at least have a 
rough idea of how they work.

 Why – why does this matter?
Why should you use your time reading (and working through) this book on data mining?  At 
the beginning of this chapter I gave examples related to the importance of data mining. The 
summary of that section would go as follows. There's lots of stuff out there (movies, music, 
books, rice cookers). There's going to be a huge growth in the amount of stuff out there. The 
problem with having all this stuff available is finding the stuff that is relevant to us. Of all the 
movies out there, what movie should I watch. What's the next book I should read? This 
problem of identifying relevant stuff is what data mining is about. Most websites will have 
some component dealing with 'finding stuff'. In addition to the movies, music, books, and 
rice cookers mentioned above, you might want recommendations about what friends to 
follow. How about a personalized newspaper showing just the news you are most interested 
in? If you are a programmer, particularly a web developer, it would be useful to know data 
mining techniques.

Okay, so you can see the reason to devote some of your time to learning data mining, but why  
this book? There are books that give you a non-technical overview of data mining. They are a 
quick read, entertaining, inexpensive, and can be read late at night (no hairy technical bits). 
A great example of this is The Numerati by Stephen Baker. I recommend this book—I 
listened to the audio version of it while driving between Virginia and New Mexico. It was 
engrossing. On the other extreme are college textbooks on data mining. They are 
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comprehensive and provide an in-depth analysis of data mining theory and practice. Again, I 
recommend books in this category. I wrote this book to fill a gap. It's a book designed for 
people who love to program—hackers.  

Eeeks!

The book has math formulas but I try to 
explain them in a way that is intelligible 
to average programmers, who may have 
forgotten a hunk of the math they took in 
college. 

If that doesn't convince you, this book is also free (as in no cost) and free as in you can share 
it. 

CONTENT BASED FILTERING & CLASSIFICATION
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The book is intended to be 
read at a computer so the 
reader can participate and 
mess with code. 

s(i, j) =
(Ru ,i − Ru )(Ru , j − Ru )

u∈U
∑
(Ru ,i − Ru )2

u∈U
∑ (Ru , j − Ru )2

u∈U
∑



 What's with the ‘Ancient Art of the Numerati’ part of the title
In June of 2010 I was trying to come up with a title for this book. I like clever titles, but 
unfortunately, I have no talent in the area. I recently published a paper titled Linguistic 
Dumpster Diving: Geographical Classification of Arabic Text (yep, a data mining paper). I 
like the title and it is clever because it fits with the content of the paper,  but I have to confess 
my wife came up with the title. I co-wrote a paper Mood and Modality: Out of the theory and  
into the fray. My co-author Marjorie McShane came up with the title. Anyway, back to June, 
2010. All my clever title ideas were so vague that you wouldn't have a clue what the book was 
about. I finally settled on A Programmer's Guide to Data Mining as part of the title. I believe 
that bit is a concise description of the content of the book—I intend the book be a guide for 
the working programmer. You might wonder what is the meaning of the part after the colon:

The Numerati is a term coined by Stephen Baker.  Each one of us generates an amazing 
amount of digital data everyday. credit card purchases, Twitter posts, Gowalla posts, 
Foursquare check-ins, cell phone calls, email messages, text messages, etc. 

You get up. The Matrix knows you boarded the subway at the Foggy Bottom Station at 7:10 
and departed the Westside Station at 7:32.  The Matrix knows you got a venti latte and a 
blueberry scone at the Starbucks on 5th and Union at 7:45; you used Gowalla to check-in at 
work at 8:05; you made an Amazon purchase for the P90X Extreme Home Fitness Workout 
Program 13 DVD set and a chin-up bar at 9:35; you had lunch at the Golden Falafel. 

Stephen Baker writes:
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The only folks who can make sense of the data we create are crack 
mathematicians, computer scientists, and engineers. What will these Numerati 
learn about us as they run us into dizzying combinations of numbers? First they 
need to find us. Say you're a potential SUV shopper in the northern suburbs of 
New York, or a churchgoing, antiabortion Democrat in Albuquerque. Maybe 
you're a Java programmer ready to relocate to Hyderabad, or a jazz-loving, 
Chianti-sipping Sagittarius looking for walks in the country and snuggles by the 
fireplace in Stockholm, or—heaven help us—maybe you're eager to strap bombs 
to your waist and climb onto a bus. Whatever you are—and each of us is a lot of 
things—companies and governments want to identify and locate 
you.       Baker 

As you can probably guess, I like this term Numerati and Stephen Baker's description of it. 

CONTENT BASED FILTERING & CLASSIFICATION
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Chapter 2: Collaborative filtering

I like what you like

We are going to start our exploration of data mining by looking at recommendation systems. 
Recommendation systems are everywhere—from Amazon: 

!



to last.fm recommending music or concerts:

In the Amazon example, above, Amazon combines two bits of information to make a 
recommendation. The first is that I viewed The Lotus Sutra translated by Gene Reeves; the 
second, that customers who viewed that translation of the Lotus Sutra  also viewed several 
other translations. 

The recommendation method we are looking at in this chapter is called collaborative 
filtering. It's called collaborative because it makes recommendations based on other people—
in effect, people collaborate to come up with recommendations. It works like this. Suppose 
the task is to recommend a book to you. I search among other users of the site to find one 
that is similar to you in the books she enjoys. Once I find that similar person I can see what 
she likes and recommend those books to you—perhaps Paolo Bacigalupi's The Windup Girl.
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How do I find someone who is similar?
So the first step is to find someone 
who is similar.  Here's the simple 
2D (dimensional) explanation. 
Suppose users rate books on a 5 
star system—zero stars means the 
book is terrible, 5 stars means the 
book is great.  Because I said we are 
looking at the simple 2D case, we 
restrict our ratings to two books: 
Neal Stephenson's Snow Crash and 
the Steig Larsson's The Girl with 
the Dragon Tattoo.

First, here's a table showing 3 users who rated these books

Snow Crash Girl with the Dragon Tattoo
Amy 5✩ 5✩
Bill 2✩ 5✩
Jim 1✩ 4✩

I would like to recommend a book to the mysterious Ms. X who rated Snow Crash 4 stars and 
The Girl with the Dragon Tattoo 2 stars.  The first task is to find the person who is most 
similar, or closest, to Ms. X.  I do this by computing distance.

COLLABORATIVE FILTERING
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Manhattan Distance
The easiest distance measure to compute is what is called Manhattan Distance or cab driver 
distance. In the 2D case, each person is represented by an (x, y) point. I will add a subscript 
to the x and y to refer to different people. So (x1, y1) might be Amy and (x2, y2) might be the 
elusive Ms. X. Manhattan Distance is then calculated by

  | x1  -  x2| + | y1  - y2 |

(so the absolute value of the 
difference between the x values plus 
the absolute value of the difference 
between the y values). So the 
Manhattan Distance for Amy and 
Ms. X is 4:

Computing the distance between Ms. X and all three people gives us:

Distance from Ms. X
Amy 4
Bill 5
Jim 5
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Amy is the closest match. We can look in her history and see, for example,  that she gave five 
stars to Paolo Bacigalupi's The Windup Girl and we would recommend that book to Ms. X.

Euclidean Distance
One benefit of Manhattan Distance is that it is fast to compute. If we are Facebook and are 
trying to find who among one million users is most similar to little Danny from Kalamazoo, 
fast is good.

Pythagorean Theorem
You may recall the Pythagorean Theorem from your distant educational past. Here, instead 
of finding the Manhattan Distance between Amy and Ms. X (which was 4) we are going to 
figure out the straight line, as-the-crow-flies, distance

COLLABORATIVE FILTERING
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The Pythagorean Theorem tells us how to compute that distance.

This straight-line, as-the-crow-flies distance we are calling Euclidean Distance. The formula 
is

 Recall that x1 is how well person 1 liked Dragon Tattoo and x2 is how well person 2 liked it; 
y1 is how well person 1 liked Snow Crash and y2 is how well person 2 liked it.

Amy rated both Snow Crash and Dragon Tattoo a 5; The elusive Ms. X rated Dragon Tattoo 
a 2 and Snow Crash a 4.  So the Euclidean distance between 

Computing the rest of the distances we get

Distance from Ms. X
Amy 3.16
Bill 3.61
Jim 3.61

p
(x1 � x2)2 + (y1 � y2)2

p
(5� 2)2 + (5� 4)2 =

p
32 + 12 =

p
10 = 3.16
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N-dimensional thinking
Let's branch out slightly from just looking at rating two books (and hence 2D) to looking at 
something slightly more complex. Suppose we work for an online streaming music service 
and we want to make the experience more compelling by recommending bands. Let's say 
users can rate bands on a star system 1-5 stars and they can give half star ratings (for 
example, you can give a band 2.5 stars). The following chart shows 8 users and their ratings 
of eight bands.

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

The hyphens in the table indicate that a user didn't rate that particular band. For now we are 
going to compute the distance based on the number of bands they both reviewed. So, for 
example, when computing the distance between Angelica and Bill, we will use the ratings for 
Blues Traveler, Broken Bells, Phoenix, Slightly Stoopid, and Vampire Weekend.  So the 
Manhattan Distance would be:

COLLABORATIVE FILTERING

2-7



Angelica Bill Difference
Blues Traveler 3.5 2 1.5
Broken Bells 2 3.5 1.5
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3
Slightly Stoopid 1.5 3.5 2
The Strokes 2.5 - -
Vampire Weekend 2 3 1
Manhattan Distance: 9

The Manhattan Distance row, the last row of the table, is simply the sum of the differences: 
(1.5  + 1.5 + 3 + 2 + 1).

Computing the Euclidean Distance is similar. We only use the bands they both reviewed:

Angelica Bill Difference Difference2

Blues Traveler 3.5 2 1.5 2.25
Broken Bells 2 3.5 1.5 2.25
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3 9
Slightly Stoopid 1.5 3.5 2 4
The Strokes 2.5 - -
Vampire Weekend 2 3 1 1
Sum of squares 18.5
Euclidean Distance 4.3
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To parse that out a bit more:

Euclidean = (3.5 − 2)2 +(2 − 3.5)2 + (5 − 2)2 + (1.5 − 3.5)2 + (2 − 3)2

= 1.52 + (−1.5)2 + 32 + (−2)2 + (−1)2

= 2.25 + 2.25 + 9 + 4 +1

= 18.5 = 4.3

Got it?

Try an example on your own...

COLLABORATIVE FILTERING
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Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

s sharpen your pencil

Compute the Euclidean Distance between Hailey and Veronica.

Compute the Euclidean Distance between Hailey and Jordyn

2-10



A flaw
It looks like we discovered a flaw with using these distance measures. When we computed the  
distance between Hailey and Veronica, we noticed they only rated two bands in common 
(Norah Jones and The Strokes), whereas when we computed the distance between Hailey 
and Jordyn, we noticed they rated five bands in common. This seems to skew our distance 
measurement, since the Hailey-Veronica distance is in 2 dimensions while the Hailey-Jordyn  

s sharpen your pencil - solution

Compute the Euclidean Distance between Hailey and Veronica.

    =
p

(4� 5)2 + (4� 3)2 =
p
1 + 1 =

p
2 = 1.414

Compute the Euclidean Distance between Hailey and Jordyn

   =
p

(4� 4.5)2 + (1� 4)2 + (4� 5)2 + (4� 4)2 + (1� 4)2

=
p

(�0.5)2 + (�3)2 + (�1)2 + (0)2 + (�3)2

 =
p
.25 + 9 + 1 + 0 + 9 =

p
19.25 = 4.387

COLLABORATIVE FILTERING
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distance is in 5 dimensions. Manhattan Distance and Euclidean Distance work best when 
there are no missing values. Dealing with missing values is an active area of scholarly 
research. Later in the book we will talk about how to deal with this problem.  For now just be 
aware of the flaw as we continue our first exploration into building a recommendation 
system.

A generalization
We can generalize Manhattan Distance and Euclidean Distance to what is called the 
Minkowski Distance Metric:

                              d(x, y) = ( | xk − yk |
r )
1
r

k=1

n

∑
When

• r = 1: The formula is Manhattan Distance.

• r = 2: The formula is Euclidean Distance

• r = ∞: Supremum Distance

h        Arghhhh Math!  

When you see formulas like this in a book you have 
several options. One option is to see the formula--
brain neurons fire that say math formula--and then 
you quickly skip over it to the next English bit. I 
have to admit that I was once a skipper. The other 
option is to see the formula, pause, and dissect it. 
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Many times you’ll find the formula quite understandable. Let’s dissect it now. When r = 1 the 
formula reduces to Manhattan Distance:

d(x, y) = | xk − yk |k=1

n∑

So for the music example we have been using throughout the chapter, x and y represent two 
people and d(x, y) represents the distance between them. n is the number of bands they both 
rated (both x and y rated that band).  We’ve done that calculation a few pages back:

Angelica Bill Difference
Blues Traveler 3.5 2 1.5
Broken Bells 2 3.5 1.5
Deadmau5  - 4  
Norah Jones 4.5 -  
Phoenix 5 2 3
Slightly Stoopid 1.5 3.5 2
The Strokes 2.5 - -
Vampire Weekend 2 3 1
Manhattan Distance: 9

That difference column represents the absolute value of the difference and we sum those up 
to get 9. 

When r = 2, we get the Euclidean distance:

d(x, y) = (xk − yk )
2

k=1

n∑

COLLABORATIVE FILTERING
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Here’s the scoop! 

The greater the r, the more a large difference in 
one dimension will influence the total difference.

Representing the data in Python (finally some coding)
There are several ways of representing the data in the table above using Python. I am going to 
use Python's dictionary (also called an associative array or hash table):

Remember,

All the code for the book is available at 
www.guidetodatamining.com. 
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users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, 
! !       "Norah Jones": 4.5, "Phoenix": 5.0, 
!                "Slightly Stoopid": 1.5, 
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":     {"Blues Traveler": 2.0, "Broken Bells": 3.5, 
                      "Deadmau5": 4.0, "Phoenix": 2.0, 
                      "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},  

         "Chan":     {"Blues Traveler": 5.0, "Broken Bells": 1.0, 
                      "Deadmau5": 1.0, "Norah Jones": 3.0, 
                      "Phoenix": 5, "Slightly Stoopid": 1.0}, 

         "Dan":      {"Blues Traveler": 3.0, "Broken Bells": 4.0, 
                      "Deadmau5": 4.5, "Phoenix": 3.0, 
                      "Slightly Stoopid": 4.5, "The Strokes": 4.0, 
                      "Vampire Weekend": 2.0},       

         "Hailey":   {"Broken Bells": 4.0, "Deadmau5": 1.0, 
                      "Norah Jones": 4.0, "The Strokes": 4.0, 
                      "Vampire Weekend": 1.0}, 

         "Jordyn":   {"Broken Bells": 4.5, "Deadmau5": 4.0, "Norah Jones": 5.0, 
                      "Phoenix": 5.0, "Slightly Stoopid": 4.5, 
                      "The Strokes": 4.0, "Vampire Weekend": 4.0}, 

         "Sam":      {"Blues Traveler": 5.0, "Broken Bells": 2.0, 
                      "Norah Jones": 3.0, "Phoenix": 5.0, 
                      "Slightly Stoopid": 4.0,  "The Strokes": 5.0},   

         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0, 
                      "Phoenix": 4.0,  "Slightly Stoopid": 2.5, 
                      "The Strokes": 3.0}}

We can get the ratings of a particular user as follows:

>>> users["Veronica"] 
{"Blues Traveler": 3.0, "Norah Jones": 5.0, "Phoenix": 4.0,  
"Slightly Stoopid": 2.5, "The Strokes": 3.0} 

>>> 

COLLABORATIVE FILTERING
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The code to compute Manhattan distance
I'd like to write a function that computes the Manhattan distance as follows:

def manhattan(rating1, rating2):
   """Computes the Manhattan distance. Both rating1 and rating2 are
   dictionaries of the form
   {'The Strokes': 3.0, 'Slightly Stoopid': 2.5 ..."""
   
   distance = 0
   for key in rating1:
      if key in rating2:
         distance += abs(rating1[key] - rating2[key]) 
   return distance    

To test the function:

>>> manhattan(users['Hailey'], users['Veronica'])

2.0 
>>> manhattan(users['Hailey'], users['Jordyn']) 
7.5 
>>> 

Now a function to find the closest person (actually this returns a sorted list with the closest 
person first):

def computeNearestNeighbor(username, users):
    """creates a sorted list of users based on their distance to
    username"""
    distances = []
    for user in users:
        if user != username:
            distance = manhattan(users[user], users[username])
            distances.append((distance, user))
    # sort based on distance -- closest first
    distances.sort()
    return distances
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And just a quick test of that function:

>>> computeNearestNeighbor("Hailey", users) 
[(2.0, ''Veronica'), (4.0, 'Chan'),(4.0, 'Sam'), (4.5, 'Dan'), (5.0, 
'Angelica'), (5.5, 'Bill'), (7.5, 'Jordyn')] 

Finally, we are going to put this all together to make recommendations. Let's say I want to 
make recommendations for Hailey. I find her nearest neighbor—Veronica in this case. I will 
then find bands that Veronica has rated but Hailey has not. Also, I will assume that Hailey 
would have rated the bands the same as (or at least very similar to)  Veronica.  For example, 
Hailey has not rated the great band Phoenix. Veronica has rated Phoenix a '4' so we will 
assume Hailey is likely to enjoy the band as well. Here is my function to make 
recommendations.

def recommend(username, users):
    """Give list of recommendations"""
    # first find nearest neighbor
    nearest = computeNearestNeighbor(username, users)[0][1]
    recommendations = []
    # now find bands neighbor rated that user didn't
    neighborRatings = users[nearest]
    userRatings = users[username]
    for artist in neighborRatings:
        if not artist in userRatings:
            recommendations.append((artist, neighborRatings[artist]))
    # using the fn sorted for variety - sort is more efficient
    return sorted(recommendations,
                  key=lambda artistTuple: artistTuple[1], 
                  reverse = True)

And now to make recommendations for Hailey:

>>> recommend('Hailey', users) 
[('Phoenix', 4.0), ('Blues Traveler', 3.0), ('Slightly Stoopid', 2.5)]
 
That fits with our expectations. As we saw above, Hailey's nearest neighbor was Veronica and 
Veronica gave Phoenix a '4'. Let's try a few more:

>>> recommend('Chan', users) 

COLLABORATIVE FILTERING
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[('The Strokes', 4.0), ('Vampire Weekend', 1.0)]

>>> recommend('Sam', users) 
[('Deadmau5', 1.0)]

We think Chan will like The Strokes and also predict that Sam will not like Deadmau5.

>>> recommend('Angelica', users) 
[]

Hmm. For Angelica we got back an empty set meaning we have no recommendations for her. 
Let us see what went wrong:

>>> computeNearestNeighbor('Angelica', users) 
[(3.5, 'Veronica'), (4.5, 'Chan'), (5.0, 'Hailey'), (8.0, 'Sam'), (9.0, 
'Bill'), (9.0, 'Dan'), (9.5, 'Jordyn')]

 
Angelica's nearest neighbor is Veronica. When we look at their ratings:

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

We see that Angelica rated every band that Veronica did. We have no new ratings, so no 
recommendations. 

Shortly, we will see how to improve the system to avoid these cases.
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s exercise 

1)  Implement the Minkowski Distance function. 

2) Alter the computeNearestNeighbor function to use Minkowski 
Distance.

COLLABORATIVE FILTERING
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s exercise - solution

1)  Implement the Minkowski Distance function. 

def minkowski(rating1, rating2, r):
    """Computes the Minkowski distance. 
    Both rating1 and rating2 are dictionaries of the form 
    {'The Strokes': 3.0, 'Slightly Stoopid': 2.5}"""
    distance = 0
    commonRatings = False 
    for key in rating1:
        if key in rating2:
            distance += 
                 pow(abs(rating1[key] - rating2[key]), r)
            commonRatings = True
    if commonRatings:
        return pow(distance,  1/r)
    else:
        return 0 #Indicates no ratings in common

2) Alter the computeNearestNeighbor function to use Minkowski Distance.

just need to alter the distance = line to

distance = minkowski(users[user], users[username], 2)

(the 2 as the r argument implements Euclidean)
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Blame the users
Let's take a look at the user ratings in a bit more detail. We see that users have very different 
behaviors when it comes to rating bands

Angelica Bill Chan Dan Hailey Jordyn Sam Veronica
Blues Traveler 3.5 2 5 3 - - 5 3
Broken Bells 2 3.5 1 4 4 4.5 2 -
Deadmau5  - 4 1 4.5 1 4 - -
Norah Jones 4.5 - 3 - 4 5 3 5
Phoenix 5 2 5 3 - 5 5 4
Slightly Stoopid 1.5 3.5 1 4.5 - 4.5 4 2.5
The Strokes 2.5 - - 4 4 4 5 3
Vampire Weekend 2 3 - 2 1 4 - -

COLLABORATIVE FILTERING
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Bill seems to 
avoid the 
extremes. His 
ratings range 
from 2 to 4

Jordyn 
seems to like 
everthing. Her 
ratings range 
from 4 to 5.

Hailey is a binary 
person giving either 1s 
or 4s to bands.



So how do we compare, for example, Hailey to Jordan? Does Hailey's '4' mean the same as 
Jordyn's '4' or Jordyn's '5'?  I would guess it is more like Jordyn's '5'. This variability can 
create problems with a recommendation system.
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I absolutely 
love Broken Bells! 
They’re tight! I 
give them a 4.

Broken Bells 
is ok. I’d give 
them a ‘4’.



Pearson Correlation Coefficient
One way to fix this problem is to use the Pearson Correlation Coefficient. First, the general 
idea.  Consider the following data (not from the data set above):

Blues 
Traveler

Norah 
Jones

Phoenix The 
Strokes

Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

This is an example of what is called 'grade inflation' in the data mining community. Clara's 
lowest rating is 4—all her rating are between 4 and 5. If we are to graph this chart it would 
look like

Straight line = Perfect Agreement!!!

3

3.5

4

4.5

5

1 2 3 4 5
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The fact that this is a straight line indicates a perfect agreement between Clara and Robert. 
Both rated Phoenix as the best band, Blues Traveler next, Norah Jones after that, and so on. 
As Clara and Robert agree less, the less the data points reside on a straight line:

Pretty Good Agreement:

Not So Good Agreement:

3

3.5

4

4.5

5

1 2 3 4 5

3

3.5

4

4.5

5

1 2 3 4 5
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So chart-wise, perfect agreement is indicated by a straight line. The Pearson Correlation 
Coefficient is a measure of correlation between two variables (in this specific case the 
correlation between Angelica and Bill). It ranges between -1 and 1 inclusive. 1 indicates 
perfect agreement. -1 indicates perfect disagreement. To give you a general feel for this, the 
chart above with the straight line has a Pearson of 1, the chart above that I labelled ‘pretty 
good agreement’ has a Pearson of 0.91, and the ‘not so good agreement’ chart has a Pearson 
of 0.81 So we can use this to find the individual who is most similar to the person we are 
interested in. 

The formula for the Pearson Correlation Coefficient is

                   r =
(xi − x )(yi − y )i=1

n∑
(xi − x )

2
i=1

n∑ (yi − y )
2

i=1

n∑

h        Arghhhh Math Again!  

Here's a personal confession. I have a Bachelor of Fine 
Arts degree in music. While I have taken courses in 
ballet, modern dance, and costume design, I did not 
have a single math course as an undergrad. Before that, I 
attended an all boys trade high school where I took 
courses in plumbing and automobile repair, but no 
courses in math other than the basics. Either due to this 
background or some innate wiring in my brain, when I 
read a book that has formulas like the one above, I tend 
to skip over the formulas and continue with the text 
below them. If you are like me I would urge you to fight 
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that urge and actually look at the formula. Many formulas that on a quick glimpse look 
complex are actually understandable by mere mortals.

Other than perhaps looking complex, the problem with the formula above is that the 
algorithm to implement it would require multiple passes through the data. Fortunately for us 
algorithmic people, there is an alternative formula, which is an approximation of Pearson:

                        
r =

xiyi −
xii=1

n∑ yii=1

n∑
ni=1

n∑

xi
2

i=1

n∑ −
( xi )

2
i=1

n∑
n

yi
2 −
( yi )

2
i=1

n∑
ni=1

n∑

(Remember what I said two paragraphs above about not skipping over formulas) This 
formula, in addition to looking initially horribly complex is, more importantly, numerically 
unstable meaning that what might be a small error is amplified by this reformulation. The big  
plus is that we can implement it using a single-pass algorithm, which we will get to shortly. 
First, let’s dissect this formula and work through the example we saw a few pages back:

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

To start with, let us compute
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             xiyii=1

n∑

Which is in the first expression in the numerator. Here the x and y represent Clara and 
Robert. 

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

For each band we are going to multiple Clara’s and Robert’s rating together and sum the 
results:

(4.75 × 4)+ (4.5 × 3)+ (5 × 5)+ (4.25 × 2)+ (4 ×1)

= 19 +13.5 + 25 + 8.5 + 4 = 70

Sweet! Now let’s compute the rest of the numerator:

xi yii=1

n∑i=1

n∑
n
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Blues Traveler Norah Jones Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

So the 

xii=1

n∑

is the sum of Clara’s ratings, which is 22.5.  The sum of Robert’s is 15 and they rated 5 bands:

22.5 ×15
5

= 67.5

So the numerator in the formula on page 26 is 70 - 67.5 = 2.5

Now let’s dissect the denominator. 

xi
2 −
( xi )

2
i=1

n∑
ni=1

n∑

First,

xi
2

i=1

n∑ = (4.75)2 + (4.5)2 + (5)2 + (4.25)2 + (4)2 = 101.875
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We’ve already computed the sum of Clara’s ratings, which is 22.5.  Square that and we get  
506.25. We divide that by the number of co-rated bands (5) and we get 101.25.

Putting that together:

101.875 −101.25 = .625 = .79057

Next we do the same computation for Robert:

yi
2 −
( yi )

2
i=1

n∑
ni=1

n∑ = 55 − 45 = 3.162277

Putting this altogether we get:

r = 2.5
.79057(3.162277)

= 2.5
2.5

= 1.00

So 1 means there was perfect agreement 
between Clara and Robert!

Take a break before moving on!!
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s exercise 

Before going to the next page, implement the algorithm in Python. You 
should get the following results.

>>> pearson(users['Angelica'], users['Bill']) 
-0.90405349906826993 
>>> pearson(users['Angelica'], users['Hailey']) 
0.42008402520840293 
>>> pearson(users['Angelica'], users['Jordyn']) 
0.76397486054754316 
>>> 

For this implementation you will need 2 Python functions sqrt (square 
root) and power operator ** which raises its left argument to the 
power of its right argument:

>>> from math import sqrt 
>>> sqrt(9) 
3.0 
>>> 3**2 
9
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s exercise - solution

Here is my implementation of Pearson

def pearson(rating1, rating2):
    sum_xy = 0
    sum_x = 0
    sum_y = 0
    sum_x2 = 0
    sum_y2 = 0
    n = 0
    for key in rating1:
        if key in rating2:
            n += 1
            x = rating1[key]
            y = rating2[key]
            sum_xy += x * y
            sum_x += x
            sum_y += y
            sum_x2 += x**2
            sum_y2 += y**2
    # if no ratings in common return 0
    if n == 0:
        return 0   
    # now compute denominator
    denominator = sqrt(sum_x2 - (sum_x**2) / n) * 
                  sqrt(sum_y2 - (sum_y**2) / n)
    if denominator == 0:
        return 0
    else:
        return (sum_xy - (sum_x * sum_y) / n) / denominator

COLLABORATIVE FILTERING
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One last formula – Cosine Similarity

I would like to present one last formula, which is very popular in text mining but also used in 
collaborative filtering—cosine similarity. To see when we might use this formula, let’s say I 
change my example slightly. We will keep track of the number of times a person played a 
particular song track and use that information to base our recommendations on.  

number of playsnumber of playsnumber of plays

The Decemberists
The King is Dead

Radiohead
The King of Limbs

Katy Perry
E.T.

Ann 10 5 32

Ben 15 25 1

Sally 12 6 27

Just by eye-balling the above chart (and by using any of the distance formulas mentioned 
above) we can see that Sally is more similar in listening habits to Ann than Ben is. 

So what is the problem?

I have around four thousand tracks in iTunes. Here is a snapshot of the top few ordered by 
number of plays:
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So my top track is Moonlight Sonata by Marcus Miller with 25 plays. Chances are that you 
have played that track zero times. In fact, chances are good that you have not played any of 
my top tracks. In addition, there are over 15 million tracks in iTunes and I have only four 
thousand. So the data for a single person is sparse since it has relatively few non-zero 
attributes (plays of a track). When we compare two people by using the number of plays of 
the 15 million tracks, mostly they will have shared zeros in common.  However, we do not 
want to use these shared zeros when we are computing similarity.

A similar case can be made when we are comparing text 
documents using words. Suppose we liked a certain 
book, say Tom Corbett Space Cadet: The Space Pioneers  
by Carey Rockwell and we want to find a similar book.  
One possible way is to use word frequency. The 
attributes will be individual words and the values of 
those attributes will be the frequency of those words in 
the book. So 6.13% of the words in The Space Pioneers 
are occurrences of the word the, 0.89% are the word 
Tom, 0.25% of the words are space.  I can compute the 
similarity of this book to others by using these word 
frequencies. However, the same problem related to 
sparseness of data occurs here. There are 6,629 
unique words in The Space Pioneers and there are a 
bit over one million unique words in English. So if 
our attributes are English words, there will be 

relatively few non-zero attributes for The Space 
Pioneers or any other book. Again, any measure of similarity should not 

depend on the shared-zero values.

COLLABORATIVE FILTERING
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Cosine similarity ignores 0-0 matches. It is defined as

        cos(x, y) =
x ⋅ y
x × y

where · indicates the dot product and ||x|| indicates the length of the vector x. The length of a  
vector is

  xi
2

i=1

n∑

Let’s give this a try with the perfect agreement example used above:

Blues 
Traveler

Norah 
Jones

Phoenix The Strokes Weird Al

Clara 4.75 4.5 5 4.25 4

Robert 4 3 5 2 1

The two vectors are:

                            
x = (4.75,4.5,5,4.25,4)
y = (4,3,5,2,1)

then

         

x = 4.752 + 4.52 + 52 + 4.252 + 42 = 101.875 = 10.09

y = 42 + 32 + 52 + 22 +12 = 55 = 7.416

The dot product is
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x ⋅ y = (4.75 × 4)+ (4.5 × 3)+ (5 × 5)+ (4.25 × 2)+ (4 ×1) = 70

And the cosine similarity is

cos(x, y) = 70
10.093× 7.416

= 70
74.85

= 0.935

The cosine similarity rating ranges from 1 indicated perfect similarity to -1 indicate perfect 
negative similarity. So 0.935 represents very good agreement.

s sharpen your pencil

Compute the Cosine Similarity between Angelica and Veronica (from our 
dataset). (Consider dashes equal to zero)

Blues 
Traveler

Broken 
Bells

Deadmau
5

Norah 
Jones

Phoenix Slightly 
Stoopid

The 
Strokes

Vampire 
Weekend

Angelica 3.5 2 - 4.5 5 1.5 2.5 2

Veronica 3 - - 5 4 2.5 3 -

COLLABORATIVE FILTERING

2-35



s sharpen your pencil - solution

Compute the Cosine Similarity between Angelica and Veronica (from our 
dataset).

Blues 
Traveler

Broken 
Bells

Deadmau
5

Norah 
Jones

Phoenix Slightly 
Stoopid

The 
Strokes

Vampire 
Weekend

Angelica 3.5 2 - 4.5 5 1.5 2.5 2

Veronica 3 - - 5 4 2.5 3 -

x = (3.5,2,0,4.5,5,1.5,2.5,2)
y = (3,0,0,5,4,2.5,3,0)

x = 3.52 + 22 + 02 + 4.52 + 52 +1.52 + 2.52 + 22 = 74 = 8.602

y = 32 + 02 + 02 + 52 + 42 + 2.52 + 32 + 02 = 65.25 = 8.078

The dot product is 

x ⋅ y =
(3.5 × 3)+ (2 × 0)+ (0 × 0)+ (4.5 × 5)+ (5 × 4)+ (1.5 × 2.5)+ (2.5 × 3)+ (2 × 0) = 64.25

Cosine Similarity is

cos(x, y) = 64.25
8.602 × 8.078

= 64.25
69.487

= 0.9246

2-36



Which similarity measure to use?

We will be exploring this question throughout the book. For now, here are a few helpful 
hints:

COLLABORATIVE FILTERING
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If your data is dense 
(almost all attributes have non-
zero values) and the magnitude 
of the attribute values is 
important, use distance 
measures such as Euclidean or 
Manhattan.

If the data is subject to 
grade-inflation (different users 
may be using different scales) 
use Pearson.

If the data is sparse 
consider using Cosine 
Similarity.

Good job, 
guys, nailed it!



So, if the data is dense (nearly all attributes have non-zero values) then Manhattan and 
Euclidean are reasonable to use. What happens if the data is not dense?  Consider an 
expanded music rating system and three people, all of which have rated 100 songs on our 
site:

Linda and Eric enjoy the same kind of music. In fact, among their ratings, they have 20 songs 
in common and the difference in their ratings of those 20 songs (on a scale of 1 to 5) averages 
only 0.5!!  The Manhattan Distance between them would be 20 x .5 = 10. The Euclidean 
Distance would be:

            d = (.5)2 × 20 = .25 × 20 = 5 = 2.236
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Jake: hardcore fan of Country 
Linda and Eric: love, love, love 60s rock!



Linda and Jake have rated only one song in common: Chris Cagle’s What a Beautiful Day. 
Linda thought it was okay and rated it a 3, Jake thought it was awesome and gave it a 5. So 
the Manhattan Distance between Jake and Linda is 2 and the Euclidean Distance is 

          d = (3− 5)2 = 4 = 2

So both the Manhattan and Euclidean Distances show that Jake is a closer match to Linda 
than Eric is.  So in this case both distance measures produce poor results. 

Good idea, but that doesn’t work either. To see why we need to bring in a few more 
characters into our little drama: Cooper and Kelsey. Jake, Cooper and Kelsey have amazingly 
similar musical tastes. Jake has rated 25 songs on our site.

COLLABORATIVE FILTERING
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Hey, I have an idea that 
might fix this problem.

Right now, people rate tunes 
on a scale of 1 to 5. How 
about for the tunes people 
don’t rate I will assume the 
rating is 0. That way we solve 
the problem of sparse data 
as every object has a value 
for every attribute!
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Cooper has rated 26 songs, and 25 of them are 
the same songs Jake rated. They love the same 
kind of music and the average distance in their 
ratings is only 0.25!!

Kelsey loves both music and our site and has 
rated 150 songs. 25 of those songs are the 
same as the ones Cooper and Jake rated. Like 
Cooper, the average distance in her ratings and 
Jake’s is only 0.25!!

Our gut feeling is that Cooper and Kelsey are 
equally close matches to Jake. 

Now consider our modified Manhattan and 
Euclidean distance formulas where we assign a 
0 for every song the person didn’t rate.

With this scheme, Cooper is a much closer 
match to Jake than Kelsey is.

Why?

Cooper

Kelsey



To answer why, let us look at a the following simplified example (again, a 0 means that 
person did not rate that song):

Song: 1 2 3 4 5 6 7 8 9 10

Jake 0 0 0 4.5 5 4.5 0 0 0 0

Cooper 0 0 4 5 5 5 0 0 0 0

Kelsey 5 4 4 5 5 5 5 5 4 4

Again, looking at the songs they mutually rated (songs 4, 5, and 6), Cooper and Kelsey seem 
like equally close matches for Jake.  However, Manhattan Distance using those zero values 
tells a different story:

dCooper ,Jake = (4 − 0)+ (5 − 4.5)+ (5 − 5)+ 5 − 4.5) = 4 + 0.5 + 0 + 0.5 = 5

dKelsey,Jake = (5 − 0)+ (4 − 0)+ (4 − 0)+ (5 − 4.5)+ (5 − 5)+ (5 − 4.5)+ (5 − 0)

                                 +(5 − 0)+ (4 − 0)+ (4 − 0)

                 = 5 + 4 + 4 + 0.5 + 0 + .5 + 5 + 5 + 4 + 4 = 32

The problem is that these zero values tend to dominate any measure of distance.  So the 
solution of adding zeros is no better than the original distance formulas. One workaround 
people have used is to compute—in some sense—an ‘average’ distance where one computes 
the distance by using songs they rated in common divided that by the number of songs they 
rated in common. 

Again, Manhattan and Euclidean work spectacularly well on dense data, but if the data is 
sparse it may be better to use Cosine Similarity.

COLLABORATIVE FILTERING
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Weirdnesses
Suppose we are trying to make recommendations for Amy who loves Phoenix, Passion Pit 
and Vampire Weekend. Our closest match is Bob who also loves Phoenix, Passion Pit, and 
Vampire Weekend. His father happens to play accordion for the Walter Ostanek Band, this 
year's Grammy winner in the polka category. Because of familial obligations, Bob gives 5 
stars to the Walter Ostanek Band. Based on our current recommendation system, we think 
Amy will absolutely love the band. But common sense tells us she probably won't.

Or think of Professor Billy Bob Olivera who loves to read data mining books and science 
fiction. His closest match happens to be me, who also likes data mining books and science 
fiction. However, I like standard poodles and have rated The Secret Lives of Standard 
Poodles highly. Our current recommendation system would likely recommend that book to 
the professor.
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The problem is that we are relying on a single “most similar” person. Any quirk that person 
has is passed on as a recommendation. One way of evening out those quirks is to base our 
recommendations on more than one person who is similar to our user. For this we can use 
the k-nearest neighbor approach. 

K-nearest neighbor 
In the k-nearest neighbor approach to collaborative filtering we use k most similar people to 
determine recommendations. The best value for k is application specific—you will need to do 
some experimentation. Here's an example to give you the basic idea.

Suppose I would like to make recommendations for Ann and am using k-nearest neighbor 
with k=3. The three nearest neighbors and their Pearson scores are shown in the following 
table:
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Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Each of these three people are going to influence the recommendations. The question is how 
can I determine how much influence each person should have. If there is a Pie of Influence™, 
how big a slice should I give each person? If I add up the Pearson scores I get 2. Sally's share 
is 0.8/2 or 40%. Eric's share is 35% (0.7 / 2)  and Amanda's share is 25%.

Suppose Amanda, Eric, and Sally, rated the band, The Grey Wardens as follows

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5

2-44

0.8 + 0.7
 + 0.5 = 

2.0



Person Grey Wardens Rating Influence
Amanda 4.5 25.00%
Eric 5 35.00%
Sally 3.5 40.00%

Projected rating = (4.5 x 0.25) + (5 x 0.35) + (3.5 x 0.4) 

  = 4.275

s sharpen your pencil

Suppose I use the same data as above but use a k-nearest neighbor 
approach with k=2. What is my projected rating for Grey Wardens?

Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5
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s solution

Person Pearson
Sally 0.8
Eric 0.7
Amanda 0.5

Person Grey Wardens Rating
Amanda 4.5
Eric 5
Sally 3.5

Projected rating = Sally’s portion + Eric’s portion 

  =   (3.5 x (0.8 / 1.5)) + (5 x (0.7 / 1.5))

  = (3.5 x .5333) + (5 x 0.4667)

       = 1.867 + 2.333

  = 4.2
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A Python Recommendation Class
I combined some of what we covered in this chapter in a Python Class. Even though it is 
slightly long I have included the code here (don't forget you can download the code at http://
www.guidetodatamining.com).

import codecs 
from math import sqrt

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
                      "Norah Jones": 4.5, "Phoenix": 5.0,
                      "Slightly Stoopid": 1.5,
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
                 "Deadmau5": 4.0, "Phoenix": 2.0,
                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
                  "Slightly Stoopid": 1.0},
         
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
                 "Deadmau5": 4.5, "Phoenix": 3.0,
                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                 "Vampire Weekend": 2.0},
         
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
                    "Norah Jones": 4.0, "The Strokes": 4.0,
                    "Vampire Weekend": 1.0},
         
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,
                     "Norah Jones": 5.0, "Phoenix": 5.0,
                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                     "Vampire Weekend": 4.0},

COLLABORATIVE FILTERING

2-47



         
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
                 "Norah Jones": 3.0, "Phoenix": 5.0,
                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,
                      "The Strokes": 3.0}
        }

class recommender:

    def __init__(self, data, k=1, metric='pearson', n=5):
        """ initialize recommender
        currently, if data is dictionary the recommender is initialized
        to it.
        For all other data types of data, no initialization occurs
        k is the k value for k nearest neighbor
        metric is which distance formula to use
        n is the maximum number of recommendations to make"""
        self.k = k
        self.n = n
        self.username2id = {}
        self.userid2name = {}
        self.productid2name = {}
        # for some reason I want to save the name of the metric
        self.metric = metric
        if self.metric == 'pearson':
            self.fn = self.pearson
        #
        # if data is dictionary set recommender data to it
        #
        if type(data).__name__ == 'dict':
            self.data = data
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    def convertProductID2name(self, id):
        """Given product id number return product name"""
        if id in self.productid2name:
            return self.productid2name[id]
        else:
            return id

    def userRatings(self, id, n):
        """Return n top ratings for user with id"""
        print ("Ratings for " + self.userid2name[id])
        ratings = self.data[id]
        print(len(ratings))
        ratings = list(ratings.items())
        ratings = [(self.convertProductID2name(k), v)
                   for (k, v) in ratings]
        # finally sort and return
        ratings.sort(key=lambda artistTuple: artistTuple[1],
                     reverse = True)
        ratings = ratings[:n]
        for rating in ratings:
            print("%s\t%i" % (rating[0], rating[1]))
        

        

    def loadBookDB(self, path=''):
        """loads the BX book dataset. Path is where the BX files are
        located"""
        self.data = {}
        i = 0
        #
        # First load book ratings into self.data
        #
        f = codecs.open(path + "BX-Book-Ratings.csv", 'r', 'utf8')
        for line in f:
            i += 1

COLLABORATIVE FILTERING

2-49



            # separate line into fields
            fields = line.split(';')
            user = fields[0].strip('"')
            book = fields[1].strip('"')
            rating = int(fields[2].strip().strip('"'))
            if user in self.data:
                currentRatings = self.data[user]
            else:
                currentRatings = {}
            currentRatings[book] = rating
            self.data[user] = currentRatings
        f.close()
        #
        # Now load books into self.productid2name
        # Books contains isbn, title, and author among other fields
        #
        f = codecs.open(path + "BX-Books.csv", 'r', 'utf8')
        for line in f:
            i += 1
            # separate line into fields
            fields = line.split(';')
            isbn = fields[0].strip('"')
            title = fields[1].strip('"')
            author = fields[2].strip().strip('"')
            title = title + ' by ' + author
            self.productid2name[isbn] = title
        f.close()
        #
        #  Now load user info into both self.userid2name and
        #  self.username2id
        #
        f = codecs.open(path + "BX-Users.csv", 'r', 'utf8')
        for line in f:
            i += 1
            # separate line into fields
            fields = line.split(';')
            userid = fields[0].strip('"')

2-50



            location = fields[1].strip('"')
            if len(fields) > 3:
                age = fields[2].strip().strip('"')
            else:
                age = 'NULL'
            if age != 'NULL':
                value = location + '  (age: ' + age + ')'
            else:
                value = location
            self.userid2name[userid] = value
            self.username2id[location] = userid
        f.close()
        print(i)
                
        
    def pearson(self, rating1, rating2):
        sum_xy = 0
        sum_x = 0
        sum_y = 0
        sum_x2 = 0
        sum_y2 = 0
        n = 0
        for key in rating1:
            if key in rating2:
                n += 1
                x = rating1[key]
                y = rating2[key]
                sum_xy += x * y
                sum_x += x
                sum_y += y
                sum_x2 += pow(x, 2)
                sum_y2 += pow(y, 2)
        if n == 0:
            return 0
        # now compute denominator
        denominator = (sqrt(sum_x2 - pow(sum_x, 2) / n)
                       * sqrt(sum_y2 - pow(sum_y, 2) / n))
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        if denominator == 0:
            return 0
        else:
            return (sum_xy - (sum_x * sum_y) / n) / denominator

    def computeNearestNeighbor(self, username):
        """creates a sorted list of users based on their distance to
        username"""
        distances = []
        for instance in self.data:
            if instance != username:
                distance = self.fn(self.data[username],
                                   self.data[instance])
                distances.append((instance, distance))
        # sort based on distance -- closest first
        distances.sort(key=lambda artistTuple: artistTuple[1],
                       reverse=True)
        return distances

    def recommend(self, user):
       """Give list of recommendations"""
       recommendations = {}
       # first get list of users  ordered by nearness
       nearest = self.computeNearestNeighbor(user)
       #
       # now get the ratings for the user
       #
       userRatings = self.data[user]
       #
       # determine the total distance
       totalDistance = 0.0
       for i in range(self.k):
          totalDistance += nearest[i][1]
       # now iterate through the k nearest neighbors
       # accumulating their ratings
       for i in range(self.k):
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          # compute slice of pie 
          weight = nearest[i][1] / totalDistance
          # get the name of the person
          name = nearest[i][0]
          # get the ratings for this person
          neighborRatings = self.data[name]
          # get the name of the person
          # now find bands neighbor rated that user didn't
          for artist in neighborRatings:
             if not artist in userRatings:
                if artist not in recommendations:
                   recommendations[artist] = (neighborRatings[artist]
                                              * weight)
                else:
                   recommendations[artist] = (recommendations[artist]
                                              + neighborRatings[artist]
                                              * weight)
       # now make list from dictionary
       recommendations = list(recommendations.items())
       recommendations = [(self.convertProductID2name(k), v)
                          for (k, v) in recommendations]
       # finally sort and return
       recommendations.sort(key=lambda artistTuple: artistTuple[1],
                            reverse = True)
       # Return the first n items
       return recommendations[:self.n]
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A New Dataset
Ok, it is time to look at a more realistic dataset. Cai-Nicolas Zeigler collected over one million  
ratings of books from the Book Crossing website. This ratings are of 278,858 users rating 
271,379 books. This anonymized data is available at http://www.informatik.uni-freiburg.de/
~cziegler/BX/  both as an SQL dump and a text file of comma-separated-values (CSV). I had 
some problems loading this data into Python due to apparent character encoding problems. 
My fixed version of the CSV files are available on this book's website. 

The CSV files represent three tables:

• BX-Users, which, as the name suggests, contains information about the users. There is an 
integer user-id field, as well as the location (i.e., Albuquerque, NM) and age. The names 
have been removed to anonymize the data.

• BX-Books. Books are identified by the ISBN, book title, author, year of publication, and 
publisher.

• BX-Book-Ratings, which includes a user-id, book ISBN, and a rating from 0-10.
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Example of this program executing
First, I will construct an instance of the recommender class with the data  
we previously used:

>>> r = recommender(users)

Some simple examples using these band ratings:

>>> r.recommend('Jordyn') 
[('Blues Traveler', 5.0)] 
>>> r.recommend('Hailey') 
[('Phoenix', 5.0), ('Slightly Stoopid', 4.5)]



The function loadBookDB in the recommender class loads the data from these files.

Now I am going to load the book dataset. The argument to the loadBookDB function is the 
path to the BX book files.

>>> r.loadBookDB('/Users/raz/Downloads/BX-Dump/') 
1700018

Now I can get recommendations for user 17118, a person from Toronto:

>>> r.recommend('171118') 
[("The Godmother's Web by Elizabeth Ann Scarborough", 10.0), ("The Irrational 
Season (The Crosswicks Journal, Book 3) by Madeleine L'Engle", 10.0), ("The 
Godmother's Apprentice by Elizabeth Ann Scarborough", 10.0), ("A Swiftly 
Tilting Planet by Madeleine L'Engle", 10.0), ('The Girl Who Loved Tom Gordon by 
Stephen King', 9.0), ('The Godmother by Elizabeth Ann Scarborough', 8.0)]

>>> r.userRatings('171118', 5) 
Ratings for toronto, ontario, canada 
2421 
The Careful Writer by Theodore M. Bernstein! 10
Wonderful Life: The Burgess Shale and the Nature of History by Stephen Jay 
Gould! 10
Pride and Prejudice (World's Classics) by Jane Austen! 10
The Wandering Fire (The Fionavar Tapestry, Book 2) by Guy Gavriel Kay! 10
Flowering trees and shrubs: The botanical paintings of Esther Heins by Judith 
Leet! 10 
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Note:
This is a large dataset and may take a bit of time to load on your computer. On my Hackintosh (2.8 GHz i7 860 with 8GB RAM) it takes 24 seconds to load the dataset and 30 seconds to run a query.
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Projects

You won't really learn this material unless you play 
around with the code. Here are some suggestions of 
what you might try.

1. Implement Manhattan distance and Euclidean 
distance and compare the results of these three 
methods.

2. The book website has a file containing movie 
ratings for 25 movies. Create a function that loads 
the data into your classifier. The recommend method 
described above should recommend movies for a 
specific person. 



Chapter 3: Collaborative filtering

Implicit ratings and 
item based filtering

In chapter 2 we learned the basics of collaborative filtering and recommendation systems. 
The algorithms described in that chapter are general purpose and could be used with a 
variety of data. Users rated different items on a five or ten point scale and the algorithms 
found other users who had similar ratings. As was mentioned, there is some evidence to 
suggest users typically do not use this fine-grain distinction and instead tend to either give 
the top rating or the lowest one. This all-or-nothing rating strategy can sometimes lead to 
unusable results. In this chapter we will examine ways to fine tune collaborative filtering to 
produce more accurate recommendations in an efficient manner.  

Explicit ratings
One way of distinguishing types of user preferences is whether they are explicit or implicit.  
Explicit ratings are when the user herself explicitly rates the item. One example of this is the 
thumbs up / thumbs down rating on sites such as Pandora and YouTube.

 



And Amazon’s star system:
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Implicit Ratings
For implicit ratings, we don't ask users to give any ratings—we just observe their behavior. 
An example of this is keeping track of what a user clicks on in the online New York Times.

After observing what a user clicks on for a few 
weeks you can imagine that we could develop a 
reasonable profile of that user—she doesn't like 
sports but seems to like technology news.  If the  
user clicks on the article “Fastest Way to Lose 
Weight Discovered by Professional Trainers” 
and the article “Slow and Steady: How to lose 
weight and keep it off” perhaps she wishes to 
lose weight. If she clicks on the iPhone ad, she 
perhaps has an interest in that product. (By the 
way, the term used when a user clicks on an ad is called 'click through'.)  

Consider what information we can gain from recording what products a user clicks on in 
Amazon. On your personalized Amazon front page this information is displayed:
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In this example, Amazon keeps track of what people click on. It knows, for example, that 
people who viewed the book Jupiter’s Travels: Four years around the world on a Triumph 
also viewed the DVD Long Way Round, which chronicles the actor Ewan McGregor as he 
travels with his mate around the world on motorcycles. As can be seen in the Amazon 
screenshot above, this information is used to display the items in the section “Customers who 
viewed this also viewed.”  

Another implicit rating is what the customer actually buys. Amazon also keeps track of this 
information and uses it for their recommendations “Frequently Bought Together” and 
“Customers Who Viewed This Item Also Bought”:

You would think that “Frequently Bought Together”  would lead to some unusual 
recommendations but this works surprisingly well.
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Imagine what information a program can acquire by monitoring your behavior in iTunes.

First, there's the fact that I added a song to iTunes. That indicates minimally that I was 
interested enough in the song to do so. Then there is the Play Count information. In the 
image above, I've listened to Zee Avi's “Anchor” 52 times. That suggests that I like that song 
(and in fact I do). If I have a song in my library for awhile and only listened to it once, that 
might indicate that I don't like the song.

k brain calisthenics 

Do you think having a user explicitly give a rating to an item is 
more accurate?

Or do you think watching what a user buys or does (for example, 
the play count) is a more accurate judge of what an individual 
likes?
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Implicit Ratings:

Receipts for: 
12 pack of Pabst Blue Ribbon beer, Whataburger, Ben and Jerry’s ice cream, pizza & donuts
DVD rental receipts: Marvel’s The Avengers, Resident Evil: Retribution, Ong Bak 3
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Explicit Rating:
match.com bio:

I am a vegan. I enjoy a 
fine Cabernet Sauvignon, 
long walks in the woods, 
reading Chekov by the 
fire, French Films, 
Saturdays at the art 
museum, and Schumann 
piano works.

Jim

what we found in 
Jim’s pocket



   

Problems with explicit ratings

Problem 1: People are lazy and don't rate items.

First, users will typically not bother to rate items. I imagine 
most of you have bought a substantial amount of stuff on 
Amazon. I know I have. In the last month I bought a 
microHelicopter, a 1TB hard drive, a USB-SATA converter, 
a bunch of vitamins, two Kindle books (Murder City: 
Ciudad Juarez and the Global Economy's New Killing 
Fields and Ready Player One) and the physical books No 
Place to Hide, Dr. Weil's 8 Weeks to Optimum Health, 
Anticancer: A new way of life, and Rework. That's twelve 
items. How many have I rated?  Zero. I imagine most of 
you are the same. You don't rate the items you buy. 

I have a gimp knee. I like hiking in the mountains and as a 
result own a number of trekking poles including some 
cheap ones I bought on Amazon that have taken a lot of 
abuse. Last year I flew to Austin for the 3 day Austin City 
Limits music festival. I aggravated my knee injury dashing 
from one flight to another and ended up going to REI to 
buy a somewhat pricey REI branded trekking pole. It broke  
in less than a day of walking on flat grass at a city park. 
Here I own $10 poles that don't break during constant use 
of hiking around in the Rockies and this pricey model 
broke on flat ground. At the time of the festival, as I was 
fuming, I planned to rate and write a review of the pole on 
the REI site. Did I? No, I am too lazy. So even in this 
extreme case I didn't rate the item. I think there are a lot of 
lazy people like me. People in general are too lazy or 
unmotivated to rate products.

COLLABORATIVE FILTERING
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Problem 2: People may lie or give only partial information.

Let's say someone gets over that initial laziness and actually rates a product. That person may  
lie. This is illustrated in the drawing a few pages back. They can lie directly—giving 
inaccurate ratings or lie via omission—providing only partial information.  Ben goes on a first  
date with Ann to see the 2010 Cannes Film Festival Winner, a Thai film, Uncle Boonmee 
Who Can Recall His Past Lives. They go with Ben's friend Dan and Dan's friend Clara. Ben 
thinks it was the worst film he ever saw. All the others absolutely loved it and gushed about it  
afterwards at the restaurant. It would not be surprising if Ben upped his rating of the film on 
online rating sites that his friends might see or just not rate the film.

 Problem 3: People don't update their ratings.

Suppose I am motivated by writing this chapter to rate my Amazon purchases. That 1TB hard 
drive works well—it's very speedy and also very quiet. I rate it five stars. That 
microHelicopter is great. It is easy to fly and great fun and it survived multiple crashes. I rate 
it five stars. A month goes by. The hard drive dies and as a result I lose all my downloaded 
movies and music—a major bummer. The microHelicopter suddenly stops working—it looks 
like the motor is fried. Now I think both products suck. Chances are pretty good that I will 
not go to Amazon and update my ratings (laziness again). People still think I would rate both 
5 stars. 

3-8



Consider Mary, a college student. For some reason, she loves giving Amazon ratings. Ten 
years ago she rated her favorite music albums with five stars: Giggling and Laughing: Silly 
Songs for Kids, and Sesame Songs: Sing Yourself Silly!  Her most recent ratings included 5 
stars for Wolfgang Amadeus Phoenix and The Twilight Saga: Eclipse Soundtrack. Based on 
these recent ratings she ends up being the closest neighbor to another college student Jen. It 
would be odd to recommend Giggling and Laughing: Silly Songs for Kids to Jen. This is a 
slightly different type of update problem than the one above, but a problem none-the-less. 

k brain calisthenics 

What do you think are the problems with implicit ratings?

(hint: think about the purchases you made on Amazon)
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A few pages ago I gave a list of items I bought at Amazon in the last month. It turns out I 
bought two of those items for other people. I bought the anticancer book for my cousin and 
the Rework book for my son. To see why this is a problem, let me come up with a more 
compelling example by going further back in my purchase history.  I bought some kettlebells 
and the book Enter the Kettlebell! Secret of the Soviet Supermen as a gift for my son and a 
Plush Chase Border Collie stuffed animal for my wife because our 14-year-old border collie 
died. Using purchase history as an implicit rating of what a person likes, might lead you to 
believe that people who like kettlebells, like stuffed animals, like microHelicopters, books on 
anticancer, and the book Ready Player One. Amazon's purchase history can't distinguish 
between purchases for myself and purchases I make as gifts. Stephen Baker describes a 
related example:

      Baker 2008.60-61.
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Figuring out that a certain white 
blouse is business attire for a female 
baby boomer is merely step one for the 
computer. The more important task is to 
build a profile of the shopper who buys 
that blouse. Let's say it's my wife. She 
goes to Macy's and buys four or five 
items for herself. Underwear, pants, a 
couple of blouses, maybe a belt. All of 
the items fit that boomer profile. She's 
coming into focus. Then, on the way out 
she remembers to buy a birthday present 
for our 16-year-old niece. Last time we 
saw her, this girl was wearing black 
clothing with a lot of writing on it, most 
of it angry. She told us she was a goth. 
So my wife goes into an “alternative” 
section and—what the hell—picks up one 
of those dog collars bristling with sharp 

spikes.



If we are attempting to build a profile of a person—what a particular person likes—this dog 
collar purchase is problematic.

Finally, consider a couple sharing a Netflix account. He likes action flicks with lots of 
explosions and helicopters; she likes intellectual movies and romantic comedies.  If we just 
look at rental history, we build an odd profile of someone liking two very different things.

Recall that I said my purchase of the book  Anticancer: A New Way of Life was as a gift to my  
cousin. If we mine my purchase history a bit more we would see that I bought this book 
before. In fact, in the last year I purchased multiple copies of three books. One can imagine 
that I am making these multiple purchases not because I am losing the books, or that I am 
losing my mind and forgetting that I read the books. The most rational reason, is that I liked 
the books so much I am in a sense recommending these books to others by giving them as 
gifts. So we can gain a substantial amount of information from a person's purchase history. 

k brain calisthenics 

What can we use as implicit data when we are observing a 
person’s behavior at a computer? Before turning the page come 
up with a list of possibilities 

COLLABORATIVE FILTERING
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Keep in mind that the algorithms described in chapter 2 can be used regardless of whether 
the data is explicit or implicit.

The problems of success
You have a successful streaming music service with a built in recommendation system. What 
could possibly go wrong?  

Suppose you have one million users. Every time you want to make a recommendation for 
someone you need to calculate one million distances (comparing that person to the 999,999 
other people). If we are making multiple recommendations per second, the number of 
calculations get extreme. Unless you throw a lot of iron at the problem the system will get 
slow. To say this in a more formal way, latency can be a major drawback of neighbor-based 

k Implicit Data: 

Web pages:     clicking on the link to a page
   time spent looking at a page
   repeated visits
   referring a page to others
   what a person watches on Hulu

Music players: what the person plays
   skipping tunes
   number of times a tune is played

This just scratches the surface!
! ! !
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recommendation systems. Fortunately, there is a solution.

 User-based filtering.
So far we have been doing user-based collaborative filtering. We are comparing a user with 
every other user to find the closest matches. There are two main problems with this 
approach:

1.  Scalability. As we have just discussed, the computation increases as the number of 
users increases. User-based methods work fine for thousands of users, but scalability gets 
to be a problem when we have a million users.

2. Sparsity. Most recommendation systems have many users and many products but the 
average user rates a small fraction of the total products. For example, Amazon carries 
millions of books but the average user rates just a handful of books. Because of this the 
algorithms we covered in chapter 2 may not find any nearest neighbors.

Because of these two issues it might be better to do what is called item-based filtering.

COLLABORATIVE FILTERING
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Lots of iron: 
a server farm



 Item-based filtering.
Suppose I have an algorithm that identifies products that are most similar to each other.  For 
example, such an algorithm might find that Phoenix's album Wolfgang Amadeus Phoenix is 
similar to Passion Pit's album, Manners. If a user rates Wolfgang Amadeus Phoenix highly 
we could recommend the similar album Manners. Note that this is different than what we 
did for user-based filtering. In user-based filtering we had a user, found the most similar 
person (or users) to that user and used the ratings of that similar person to make 
recommendations. In item-based filtering, ahead of time we find the most similar items, and 
combine that with a user's rating of items to generate a recommendation. 

 Can you give me an example?
Suppose our streaming music site has m users and n bands, where the users rate bands. This 
is shown in the following table. As before, the rows represent the users and the columns 
represent bands. 

Users ... Phoenix ... Passion 
Pit

... n

1 Tamera Young 5

2 Jasmine Abbey 4

3 Arturo Alvarez 1 2

... ...

u Cecilia De La Cueva 5 5

... ...

m-1 Jessica Nguyen 4 5

m Jordyn Zamora 4
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We would like to compute the similarity of Phoenix to Passion Pit. To do this we only use 
users who rated both bands as indicated by the blue squares. If we were doing user-based 
filtering we would determine the similarity between rows. For item-based filtering we are 
determining the similarity between columns—in this case between the Phoenix and Passion 
Pit columns. 

COLLABORATIVE FILTERING

3-15

User-based filtering is also called memory based 

collaborative filtering. Why? Because we need to 

store all the ratings in order to make 

recommendations.

Item-based filtering is also called model-based 

collaborative filtering. Why? Because we don’t need 

to store all the ratings. We build a model 

representing how close every item is to every other 

item!



Adjusted Cosine Similarity.
To compute the similarity between items we will use Cosine Similarity which was introduced 
in chapter 2. We also already talked about grade inflation where a user gives higher ratings 
than expected. To compensate for this grade inflation we will subtract the user's average 
rating from each rating. This gives us the adjusted cosine similarity formula shown on the 
following page.
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I like Phoenix, I’ll give 
them a ‘5’. I don’t like Passion 
Pit, I’ll give them a ‘3’!

Phoenix is awesome, They’re 
definitely a ‘4’. Passion Pit sucks. 
A definite 0!



s(i, j) =
(Ru,i − Ru )(Ru, j − Ru )

u∈U
∑
(Ru,i − Ru )2

u∈U
∑ (Ru, j − Ru )2

u∈U
∑

This formula is from a seminal article in collaborative filtering: “Item-based collaborative 
filtering recommendation algorithms” by Badrul Sarwar, George Karypis, Joseph Konstan, 
and John Reidl (http://www.grouplens.org/papers/pdf/www10_sarwar.pdf) 

Ru,i − Ru( )
means the rating R user u gives to item i minus the average rating that user gave for all items 
she rated. This gives us the normalized rating. In the formula above for s(i,j) we are finding 
the similarity between items i and j. The numerator says that for every user who rated both 
items multiply the normalized rating of those two items and sum the results. In the 
denominator we sum the squares of all the normalized ratings for item i and then take the 
square root of that result. We do the same for item j. And then we multiply those two 
together.

To illustrate adjusted cosine similarity we will use the following data where five students 
rated five musical artists.

Users average 
rating

Kacey 
Musgraves

Imagine 
Dragons

Daft Punk Lorde Fall Out 
Boy

David  3 5 4 1

Matt   3 4 4 1

Ben  4 3  3 1

Chris  4 4 4 3 1

Torri  5 4 5 3

The first thing to do is to compute each user’s average rating. That is easy!  Go ahead and fill 
that in.

COLLABORATIVE FILTERING
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U is the set of all users who 

rated both items i and j!



Users average 
rating

Kacey 
Musgraves

Imagine 
Dragons

Daft Punk Lorde Fall Out 
Boy

David 3.25  3 5 4 1

Matt 3.0  3 4 4 1

Ben 2.75 4 3  3 1

Chris 3.2 4 4 4 3 1

Tori 4.25 5 4 5 3

Now for each pair of musical artists we are going to compute their similarity. Let’s start with 
Kacey Musgraves and Imagine Dragons. In the above table, I have circled the cases where a 
user rated both bands.  So the adjusted cosine similarity formula is 

s(Musgraves,Dragons) =
(Ru,Musgraves − Ru )(Ru,Dragons − Ru )

u∈U
∑
(Ru,Musgraves − Ru )2

u∈U
∑ (Ru,Dragons − Ru )2

u∈U
∑

= 0.7650
2.765 0.765

= 0.7650
(1.6628)(0.8746)

= 0.7650
1.4543

= 0.5260
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= (4 − 2.75)(3− 2.75)+ (4 − 3.2)(4 − 3.2)+ (5 − 4.25)(4 − 4.25)
(4 − 2.75)2 + (4 − 3.2)2 + (5 − 4.25)2 (3− 2.75)2 + (4 − 3.2)2 + (4 − 4.25)2

Ben’s 
ratings

Chris’s
 ratings

Tori’s 
ratings



So the similarity between Kacey Musgraves and Imagine Dragons is 0.5260.  I have 
computed some of the other similarities and entered them in this table:

Fall Out 
Boy

Lorde Daft 
Punk

Imagine 
Dragons

Kacey Musgraves -0.9549 1.0000 0.5260

Imagine Dragons -0.3378 0.0075

Daft Punk -0.9570  

Lorde -0.6934

Fall Out Boy

s sharpen your pencil

Compute the rest of the values in the table above!
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s sharpen your pencil - solution
Fall Out 

Boy
Lorde Daft 

Punk
Imagine 
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.2525 0.0075

Daft Punk -0.9570 0.7841  

Lorde -0.6934

To compute these values I wrote a small Python script:

def computeSimilarity(band1, band2, userRatings):
   averages = {}
   for (key, ratings) in userRatings.items():
      averages[key] = (float(sum(ratings.values()))
                      / len(ratings.values()))

   num = 0  # numerator
   dem1 = 0 # first half of denominator
   dem2 = 0
   for (user, ratings) in userRatings.items():
      if band1 in ratings and band2 in ratings:
         avg = averages[user]
         num += (ratings[band1] - avg) * (ratings[band2] - avg)
         dem1 += (ratings[band1] - avg)**2
         dem2 += (ratings[band2] - avg)**2
   return num / (sqrt(dem1) * sqrt(dem2))

The format for the userRatings is shown on the following page!
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Fall Out Boy Lorde Daft Punk Imagine 
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.253 0.0075

Daft Punk -0.9570 0.7841  

Lorde -0.6934

s sharpen your pencil - solution cont’d

users3 = {"David": {"Imagine Dragons": 3, "Daft Punk": 5,
                    "Lorde": 4, "Fall Out Boy": 1},
          "Matt":  {"Imagine Dragons": 3, "Daft Punk": 4,
                    "Lorde": 4, "Fall Out Boy": 1},
          "Ben":   {"Kacey Musgraves": 4, "Imagine Dragons": 3,
                    "Lorde": 3, "Fall Out Boy": 1},
          "Chris": {"Kacey Musgraves": 4, "Imagine Dragons": 4,
                    "Daft Punk": 4, "Lorde": 3, "Fall Out Boy": 1},
          "Tori":  {"Kacey Musgraves": 5, "Imagine Dragons": 4,
                    "Daft Punk": 5, "Fall Out Boy": 3}}

COLLABORATIVE FILTERING
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Now that we have this nice 
matrix of similarity values, it would 
be dreamy if we could use it to 
make predictions.! (I wonder how 
well David will like Kacey 

Musgraves?)
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p(u,i) =
(Si,N × Ru,N )N∈similarTo(i )∑
( Si,N )N∈similarTo(i )∑

English, please!

Okay! p(u,i) means we are 
going to predict the rating user 

u will give item i.

so, P(David, Kacey 
Musgraves) means our 
prediction for the rating David 
(the u in the equation) will give 
Kacey Musgraves (the i in the 
equation)

N is each of the 
items that person u rated 
that are similar to item i. 
By ‘similar’ I mean that 
there is a similarity score 
between N and i in our 
matrix!
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Si,N is the similarity 
between i and N (from 
the similarity matrix)

p(u,i) =
(Si,N × Ru,N )N∈similarTo(i )∑
( Si,N )N∈similarTo(i )∑

Ru,N is the rating 
user u gave item N 

Ru,N is We are trying to predict how well 
user u will like item i (what rating user u will give 
item i)

For this to work best, RN,i 
should be a value in the range  -1 to 1.

Our ratings are in the range 1 
to 5. So we will need some numeric 
Kung Fu to convert our ratings to the 
-1 to 1 scale.



    

The equation to denormalize (go from the normalized rating to one in our original scale of 1-5  
is:

Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR ))+MinR

Let’s say someone rated Fall Out Boy a 2. Our normalized rating would be ...

NRu,N =
2(Ru,N −MinR )− (MaxR −MinR )

(MaxR −MinR )
= 2(2 −1)− (5 −1)

(5 −1)
= −2
4

= −0.5

and to go the other way ...
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Our current music ratings range from 1 to 5. Let 
MaxR be the maximum rating (5 in our case) and 
MinR be the minimum rating (1). Ru,N  is the 
current rating user u gave item N. NRu,N is the 
normalized rating (the new rating on the scale of 
-1 to 1. The equation to normalize the rating is
NRu,N = 2(Ru,N −MinR )− (MaxR −MinR )(MaxR −MinR )



Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR ))+MinR

= 1
2
((−0.5 +1)× 4)+1= 1

2
(2)+1= 1+1= 2

Okay. We now have that numeric Kung Fu under our belt!

The first thing we are going to do is normalize David’s ratings:
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David’s Ratings

Let’s see how this works with 
an example!

We are trying to predict what 
rating David would give Kacey 
Musgraves.

Artist R NR

Imagine Dragons 3 0

Daft Punk 5 1

Lorde 4 0.5

Fall Out Boy 1 -1

We will learn more about 

normalization in the next 

chapter!
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David rated Imagine Dragons, Daft Punk, 
Lorde, and Fall Out Boy so we will use those in 
our calculations to determine how well he will 
like Kacey Musgraves.

And we will be using the normalized 
ratings!

p(u,i) =
(Si,N × NRu,N )N∈similarTo(i )∑

( Si,N )N∈similarTo(i )∑ =

Imagine Dragons     Daft Punk        Lorde              Fall Out Boy

Similarity Matrix

Fall Out 
Boy

Lorde Daft Punk Imagine 
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.2525 0.0075

Daft Punk -0.9570 0.7841  

Lorde -0.6934

(.5260 × 0)+ (1.00 ×1)+ (.321× 0.5)+ (−.955 × −1)
0.5260 +1.000 + 0.321+ 0.955



= 0 +1+ 0.1605 + 0.955
2.802

= 2.1105
2.802

= 0.753

So we predict that David will rate Kacey Musgraves a 0.753 on a scale of -1 to 1. To get back to 
our scale of 1 to 5 we need to denormalize:

Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR ))+MinR

= 1
2
((0.753+1)× 4)+1= 1

2
(7.012)+1= 3.506 +1= 4.506

So we predict that David will rate Kacey Musgraves a 4.506! 
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Adjusted Cosine Similiarity is a Model-Based Colloborative 

Filtering Method. As mentioned a few pages back, one advantage 

of these methods compared to memory-based ones is that they 

scale better. For large data sets, model-based methods tend to 

be fast and require less memory. 

Often people use rating scales differently. I may rate artists I 

am not keen on a ‘3’ and artists I like a ‘4’. You may rate 

artists you dislike a ‘1’ and artists you like a ‘5’. Adjusted 

Cosine Similarity handles this problem by subtracting the 

corresponding user’s average rating from each rating.



Slope One
Another popular algorithm for item-based collaborative filtering is Slope One. A major 
advantage of Slope One is that it is simple and hence easy to implement. Slope One was 
introduced in the paper “Slope One Predictors for Online Rating-Based Collaborative 
Filtering” by Daniel Lemire and Anna Machlachlan (http://www.daniel-lemire.com/fr/
abstracts/SDM2005.html). This is an awesome paper and well worth the read. 

Here's the basic idea in a minimalist nutshell. Suppose Amy gave a rating of 3 to PSY and a 
rating of 4 to Whitney Houston. Ben gave a rating of 4 to PSY. We'd like to predict how Ben 
would rate Whitney Houston. In table form the problem might look like this:

PSY Whitney Houston

Amy

Ben

3 4

4 ?

To guess what Ben might rate Whitney Houston we could reason as follows. Amy rated 
Whitney one whole point better than PSY. We can predict then than Ben would rate Whitney 
one point higher so we will predict that Ben will give her a '5'. 

There are actually several Slope One algorithms. I will present the Weighted Slope One 
algorithm. Remember that a major advantage is that the approach is simple. What I present 
may look complex, but bear with me and things should become clear. You can consider Slope 
One to be in two parts. First, ahead of time (in batch mode, in the middle of the night or 
whenever) we are going to compute what is called the deviation between every pair of items. 
In the simple example above, this step will determine that Whitney is rated 1 better than PSY.   
Now we have a nice database of item deviations. In the second phase we actually make 
predictions. A user comes along, Ben for example. He has never heard Whitney Houston and 
we want to predict how he would rate her. Using all the bands he did rate along with our 
database of deviations we are going to make a prediction. 
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The Broad Brush Picture

Part 1: Computing deviation
Let's make our previous example way more complex by adding two users and one band:

Taylor Swift PSY Whitney Houston

Amy

Ben

Clara

Daisy

4 3 4

5 2 ?

? 3.5 4

5 ? 3

The first step is to compute the deviations. The average deviation of an item i with respect to 
item j is:

                                devi, j =
ui − uj

card(Si, j (X))u∈Si , j (X )
∑

where card(S) is how many elements are in S and X is the entire set of all ratings. So 
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Part 1 (done ahead of time)
Compute deviations between every 
pair of items

Part 2
Use deviations to make 
predictions



card(Sj,i(X)) is the number of people who have rated both j and i. Let's consider the deviation 
of PSY with respect to Taylor Swift. In this case, card(Sj,i(X)) is 2—there are 2 people (Amy 
and Ben) who rated both Taylor Swift and PSY.  The uj – ui numerator is (that user’s rating 
for Taylor Swift) minus (that user’s rating for PSY). So the deviation is:

                 devswift ,psy =
(4 − 3)
2

+ (5 − 2)
2

= 1
2
+ 3
2
= 2

So the deviation from PSY to Taylor Swift is 2 meaning that on average users rated Taylor 
Swift 2 better than PSY. What is the deviation from Taylor Swift to PSY?

               devpsy,swift =
(3− 4)
2

+ (2 − 5)
2

= − 1
2
+ − 3

2
= −2

s sharpen your pencil

Compute the rest of the values in this table:
Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2

-2 0

0
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s sharpen your pencil - solution

Compute the rest of the values in this table:

Taylor Swift with respect to Whitney Houston:

        devswift ,houston =
(4 − 4)
2

+ (5 − 3)
2

= 0
2
+ 2
2
= 1

PSY with respect to Whitney Houston:

        devpsy,houston =
(3− 4)
2

+ (3.5 − 4)
2

= −1
2
+ −.5
2

= −.75

Taylor Swift PSY Whitney 
Houston

Taylor Swift

PSY

Whitney 
Houston

0 2 1

-2 0 -0.75

-1 0.75 0
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k brain calisthenics 
        
Consider our streaming music site with one million users rating 200,000 
artists. If we get a new user who rates 10 artists do we need to run the 
algorithm again to generate the deviations of all 200k x 200k pairs or is 
there an easier way?

(answer on next page)
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k brain calisthenics 
        
Consider our streaming music site with one million users rating 200,000 artists. If we 
get a new user who rates 10 artists do we need to run the algorithm again to generate 
the deviations of all 200k x 200k pairs or is there an easier way?

You don't need to run the algorithm on the entire dataset again. 
That's the beauty of this method. For a given pair of items we only 
need to keep track of the deviation and the total number of people 
rating both items. 

For example, suppose I have a deviation of Taylor Swift with respect 
to PSY of 2 based on 9 people. I have a new person who rated 
Taylor Swift 5 and PSY 1 the updated deviation would be

((9 * 2) + 4) / 10 = 2.2

COLLABORATIVE FILTERING
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Part 2: Making predictions with Weighted Slope One
Okay, so now we have a big collection of deviations. How can we use that collection to make 
predictions? As I mentioned, we are using Weighted Slope One or PwS1 --for Weighted Slope 
One Prediction. The formula is:

                  PwS1(u) j =
(devj ,i + ui

i∈S(u )−{ j}
∑ )cj ,i

c j ,i
i∈S(u )−{ j}
∑

where 

cj ,i = card(Sj ,i (χ ))

PwS1(u)j means our prediction using Weighted Slope One of user u’s rating for item j. So, for 
example PwS1(Ben)Whitney Houston  means our prediction for what Ben would rate Whitney 
Houston.

Let's say I am interested in answering that question: How might Ben rate Whitney Houston?

Let's dissect the numerator. 

i∈S(u )−{ j}
∑

means for every musician that Ben has rated (except for Whitney Houston that is the {j} bit).

The entire numerator means for every musician i that Ben has rated (except for Whitney 
Houston) we will look up the deviation of Whitney Houston to that musician and we will add 
that to Ben's rating for musician i. We multiply that by the cardinality of that pair—the 
number of people that rated both musicians (Whitney and musician i). 
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Let's step through this:

First, here are Ben’s ratings and our deviations table from before:

Taylor Swift PSY Whitney Houston

Ben 5 2 ?

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 1

-2 0 -0.75

-1 0.75 0

1. Ben has rated Taylor Swift and gave her a 5—that is the ui.

2. The deviation of Whitney Houston with respect to Taylor Swift is -1 —this is the devj,i.

3. devj,i + ui then is 4.

4. Looking at page 3-19 we see that there were two people (Amy and Daisy) that rated both 
Taylor Swift and Whitney Houston so cj,i = 2

5. So (devj,i + ui) cj,i = 4 x 2 = 8

6. Ben has rated PSY and gave him a 2.

7. The deviation of Whitney Houston with respect to PSY is 0.75

8.  devj,i + ui then is 2.75

9. Two people rated both Whitney Houston and PSY so (devj,i + ui) cj,i =  2.75 x 2 = 5.5

10.  We sum up steps 5 and 9 to get 13.5 for the numerator

DENOMINATOR

11.  Dissecting the denominator we get something like for every musician that Ben has rated,  
sum the cardinalities of those musicians (how many people rated both that musician and 
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Whitney Houston). So Ben has rated Taylor Swift and the cardinality of Taylor Swift and 
Whitney Houston (that is, the total number of people that rated both of them) is 2. Ben 
has rated PSY and his cardinality is also 2.  So the denominator is 4.

12. So our prediction of how well Ben will like Whitney Houston is 
13.5
4

= 3.375
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Putting this into Python
I am going to extend the Python class developed in chapter 2. To save space I will not repeat 
the code for the recommender class here—just refer back to it (and remember that you can 
download the code at http://guidetodatamining.com). Recall that the data for that class was 
in the following format:

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},

          "Ben": {"Taylor Swift": 5, "PSY": 2},

          "Clara": {"PSY": 3.5, "Whitney Houston": 4},

          "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}

First computing the deviations.

Again, the formula for computing deviations is

devi, j =
ui − u j

card(Si, j (X))u∈Si , j (X )
∑

So the input to our computeDeviations function should be data in the format of users2 above. 
The output should be a representation of the following data:

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 (2) 1 (2)

-2 (2) 0 -0.75 (2)

-1 (2) 0.75 (2) 0

The number in the parentheses is the frequency (that is, the number of people that rated that 
pair of musicians). So for each pair of musicians we need to record both the deviation and the 
frequency. 
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The pseudoCode for our function could be

def computeDeviations(self):
   for each i in bands:
      for each j in bands:
         if i ≠ j:
            compute dev(j,i)

That pseudocode looks pretty nice but as you can see, there is a disconnect between the data 
format expected by the pseudocode and the format the data is really in (see users2 above as 
an example).  As code warriors we have two possibilities, either alter the format of the data, 
or revise the psuedocode. I am going to opt for the second approach. This revised pseudocode  
looks like

def computeDeviations(self):
   for each person in the data:
      get their ratings
" for each item & rating in that set of ratings:
"    for each item2 & rating2 in that set of ratings:
"       add the difference between the ratings to our computation

Let's construct the method step-by-step

Step 1:
def computeDeviations(self):        
" # for each person in the data:        
" #    get their ratings        
" for ratings in self.data.values():

Python dictionaries (aka hash tables) are key value pairs. Self.data is a dictionary. The 
values method extracts just the values from the dictionary. Our data looks like

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},
          "Ben": {"Taylor Swift": 5, "PSY": 2},
          "Clara": {"PSY": 3.5, "Whitney Houston": 4},
          "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}
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So the first time through the loop ratings = {"Taylor Swift": 4, "PSY": 3, 
"Whitney Houston": 4}.

Step 2

def computeDeviations(self):        
   # for each person in the data:        
   #    get their ratings        
   for ratings in self.data.values(): 
      #for each item & rating in that set of ratings:            
" for (item, rating) in ratings.items():                
"    self.frequencies.setdefault(item, {}) 
         self.deviations.setdefault(item, {})

In the recommender class init method I initialized self.frequencies and self.deviations to be 
dictionaries. 

    def __init__(self, data, k=1, metric='pearson', n=5):
        ... 

        #
        # The following two variables are used for Slope One
        # 
        self.frequencies = {}
        self.deviations = {}

The Python dictionary method setdefault takes 2 arguments: a key and an initialValue. This 
method does the following. If the key does not exist in the dictionary it is added to the 
dictionary with the value initialValue. Otherwise it returns the current value of the key. 

COLLABORATIVE FILTERING
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Step 3
def computeDeviations(self):        
   # for each person in the data:        
   #    get their ratings        
   for ratings in self.data.values(): 
      # for each item & rating in that set of ratings:            
      for (item, rating) in ratings.items():                
"  self.frequencies.setdefault(item, {})                
" " " " "     
         self.deviations.setdefault(item, {}) 
         # for each item2 & rating2 in that set of ratings:                
         for (item2, rating2) in ratings.items():                    
            if item != item2:                        
               # add the difference between the ratings 
               # to our computation                        
               self.frequencies[item].setdefault(item2, 0)                        
               self.deviations[item].setdefault(item2, 0.0)                         
               self.frequencies[item][item2] += 1                        
               self.deviations[item][item2] += rating - rating2

The code added in this step computes the difference between two ratings and adds that to the 
self.deviations running sum.  Again, using the data:

{"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4}

when we are in the outer loop where item = “Taylor Swift” and rating = 4 and in the inner 
loop where item2 = “PSY” and rating2 = 3 the last line of the code above adds 1 to 
self.deviations[“Taylor Swift”][“PSY”]. 

Step 4:
Finally, we need to iterate through self.deviations to divide each deviation by its associated 
frequency.
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def computeDeviations(self):
   # for each person in the data:
   #    get their ratings
   for ratings in self.data.values():
      # for each item & rating in that set of ratings:
      for (item, rating) in ratings.items():
         self.frequencies.setdefault(item, {})
         self.deviations.setdefault(item, {})                    
         # for each item2 & rating2 in that set of ratings:
         for (item2, rating2) in ratings.items():
            if item != item2:
               # add the difference between the ratings 
               # to our computation
               self.frequencies[item].setdefault(item2, 0)
               self.deviations[item].setdefault(item2, 0.0)
               self.frequencies[item][item2] += 1
               self.deviations[item][item2] += rating - rating2
        
   for (item, ratings) in self.deviations.items():
      for item2 in ratings:
         ratings[item2] /= self.frequencies[item][item2]

That's it!  Even with comments we implemented

devi, j =
ui − uj

card(Si, j (X))u∈Si , j (X )
∑

in only 18 lines of code.  Incredible!

When I run this method on the data I have been using in this example:

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},
          "Ben": {"Taylor Swift": 5, "PSY": 2},
          "Clara": {"PSY": 3.5, "Whitney Houston": 4},
          "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}
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I get

>>> r = recommender(users2)
>>> r.computeDeviations()
>>> r.deviations
{'PSY': {'Taylor Swift': -2.0, 'Whitney Houston': -0.75}, 'Taylor 
Swift': {'PSY': 2.0, 'Whitney Houston': 1.0}, 'Whitney Houston': 
{'PSY': 0.75, 'Taylor Swift': -1.0}}

which is what we obtained when we computed this example by hand:

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 1

-2 0 -0.75

-1 0.75 0
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Weighted Slope 1: The recommendation component

Now it is time to code the recommendation component:

PwS1(u) j =
(devj ,i + ui

i∈S(u )−{ j}
∑ )cj ,i

c j ,i
i∈S(u )−{ j}
∑

The big question I have is can we beat the 18 line implementation of computeDeviations.  
First, let's parse that formula and put it into English and/or pseudocode. You try:

s sharpen your pencil

The formula in pseudo English:
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s sharpen your pencil - a solution

Here's my version of the formula:

I would like to make recommendations for a particular user. I have that 
user's recommendations in the form

         {"Taylor Swift": 5, "PSY": 2}

For every userItem and userRating in the user's recommendations:
   For every diffItem that the user didn't rate (item2 ≠ item):
 add the deviation of diffItem with respect to userItem to 
 the userRating of the userItem. Multiply that by the number of 
  people that rated both userItem and diffItem.
  Add that to the running sum for diffItem
  Also keep a running sum for the number of people that 
   rated diffItem.

Finally, for every diffItem that is in our results list, divide the total sum 
of that item by the total frequency of that item and return the results.
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And here is my conversion of that to Python:

   def slopeOneRecommendations(self, userRatings):
      recommendations = {}
      frequencies = {}
      # for every item and rating in the user's recommendations
      for (userItem, userRating) in userRatings.items():
         # for every item in our dataset that the user didn't rate
         for (diffItem, diffRatings) in self.deviations.items():
            if diffItem not in userRatings and \
               userItem in self.deviations[diffItem]:
               freq = self.frequencies[diffItem][userItem]
               recommendations.setdefault(diffItem, 0.0)
               frequencies.setdefault(diffItem, 0)
               # add to the running sum representing the numerator
               # of the formula
               recommendations[diffItem] += (diffRatings[userItem] +
                                             userRating) * freq
               # keep a running sum of the frequency of diffitem
               frequencies[diffItem] += freq

      recommendations =  [(self.convertProductID2name(k),
                           v / frequencies[k])
                          for (k, v) in recommendations.items()]
      
      # finally sort and return
      recommendations.sort(key=lambda artistTuple: artistTuple[1],
                           reverse = True)
      return recommendations

And here is a simple test of the complete Slope One implementation:

>>> r = recommender(users2)
>>> r.computeDeviations()
>>> g = users2['Ben']
>>> r.slopeOneRecommendations(g)
[('Whitney Houston', 3.375)]

COLLABORATIVE FILTERING
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This results matches what we calculated by hand.  So the recommendation part of the 
algorithm weighs in at 18 lines. So in 36 lines of Python code we implemented the Slope One 
algorithm. With Python you can write pretty compact code.

 MovieLens data set
Let's try out the Slope One recommender on a different dataset. The MovieLens dataset—
collected by the GroupLens Research Project at the University of Minnesota—contains user 
ratings of movies. The data set is available for download at www.grouplens.org. The data set 
is available in three sizes; for the demo here I am 
using the smallest one which contains 100,000 
ratings (1-5) from 943 users on 1,682 movies. I 
wrote a short function that will import this data 
into the recommender class.

Let's give it a try.

First, I will load the data into the Python recommender object:

>>> r = recommender(0) 
>>> r.loadMovieLens('/Users/raz/Downloads/ml-100k/')
102625

I will be using the info from User 1. Just to peruse the data, I will look at the top 50 items the 
user 1 rated:

>>> r.showUserTopItems('1', 50)
When Harry Met Sally... (1989)" 5
Jean de Florette (1986)"5
Godfather, The (1972)" 5
Big Night (1996)" 5
Manon of the Spring (Manon des sources) (1986)"5
Sling Blade (1996)" 5
Breaking the Waves (1996)" 5
Terminator 2: Judgment Day (1991)" 5
Searching for Bobby Fischer (1993)"5
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Maya Lin: A Strong Clear Vision (1994)" 5
Mighty Aphrodite (1995)"5
Bound (1996)" 5
Full Monty, The (1997)" 5
Chasing Amy (1997)" 5
Ridicule (1996)" 5
Nightmare Before Christmas, The (1993)" 5
Three Colors: Red (1994)" 5
Professional, The (1994)" 5
Priest (1994)" 5
...

User 1 rated all these movies a ‘5’!

Now I will do the first step of Slope One: computing the deviations:

>>> r.computeDeviations() 

Finally, let's get recommendations for User 1:

>>> r.slopeOneRecommendations(r.data['1'])

[('Entertaining Angels: The Dorothy Day Story (1996)', 6.375), ('Aiqing 
wansui (1994)', 5.849056603773585), ('Boys, Les (1997)', 
5.644970414201183), ("Someone Else's America (1995)", 
5.391304347826087), ('Santa with Muscles (1996)', 5.380952380952381), 
('Great Day in Harlem, A (1994)', 5.275862068965517),  ...

and user 25:

>>> r.slopeOneRecommendations(r.data['25'])

[('Aiqing wansui (1994)', 5.674418604651163), ('Boys, Les (1997)', 
5.523076923076923), ('Star Kid (1997)', 5.25), ('Santa with Muscles 
(1996)',

COLLABORATIVE FILTERING
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Congratulations on finishing chapter 3!!

There was some hard work in this chapter--dissecting 
complex-looking formulas to gain an understanding of them 
and then implementing them. 

 Projects

1. See how well the Slope One recommender recommends movies for 
you. Rate 10 movies or so (ones that are in the MovieLens dataset). 
Does the recommender suggest movies you might like? 

2. Implement Adjusted Cosine Similarity. Compare its performance to 
Slope One.

3. (harder) I run out of memory (I have 8GB on my desktop) when I 
try to run this on the Book Crossing Dataset. Recall that there are 
270,000 books that are rated. So we would need a 270,000 x 
270,000 dictionary to store the deviations. That's roughly 73 billion 
dictionary entries. How sparse is this dictionary for the MovieLens 
dataset? Alter the code so we can handle larger datasets. 
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Chapter 4 Content Based Filtering & Classification

Classification based on item 
attributes

In the previous chapters we talked about making recommendations by collaborative filtering 
(also called social filtering). In collaborative filtering we harness the power of a community 
of people to help us make recommendations. You buy Wolfgang Amadeus Phoenix. We know 
that many of our customers who bought that album also bought Contra by Vampire 
Weekend. So we recommend that album to you. I watch an episode of Doctor Who and 
Netflix recommends Quantum Leap because many people who watched Doctor Who also 
watched Quantum Leap. In previous chapters we talked about some of the difficulties of 
collaborative filtering including problems with data sparsity and scalability.  Another 
problem is that recommendation systems based on collaborative filtering tend to recommend 
already popular items—there is a bias toward popularity. As an extreme case, consider a 
debut album by a brand new band. Since that band and album have never been rated by 
anyone (or purchased by anyone since it is brand new), it will never be recommended. 

 

“These recommenders can create a rich-get-richer effect for popular products and vice-versa for unpopular ones”
Daniel Fleder & Kartik Hosanagar. 2009. “Blockbusters 
Culture’s Next Rise or Fall: The Impact of Recommender 
Systems on Sales Diversity” Management Science vol 55 



In this chapter we look at a different approach. Consider the streaming music site, Pandora. 
In Pandora, as many of you know, you can set up different streaming radio stations. You seed 
each station with an artist and Pandora will play music that is similar to that artist. I can 
create a station seeded with the band Phoenix. It then plays bands it thinks are similar to 
Phoenix—for example, it plays a tune by El Ten Eleven. It doesn't do this with collaborative 
filtering—because people who listened to Phoenix also listened to the El Ten Eleven. It plays 
El Ten Eleven because the algorithm believes that El Ten Eleven is musically similar to 
Phoenix. In fact, we can ask Pandora why it played a tune by the group:

It plays El Ten Eleven’s tune My Only Swerving  on the Phoenix station because “Based on 
what you told us so far, we’re playing this track because it features repetitive melodic 
phrasing, mixed acoustic and electric instrumentation, major key tonality, electric guitar riffs 
and an instrumental arrangement.” On my Hiromi station it plays a tune by E.S.T. because 
“it features classic jazz roots, a well-articulated piano solo, light drumming, an interesting 
song structure and interesting part writing.”

4-2



Pandora bases its recommendation on what it calls The Music Genome Project. They hire 
professional musicians with a solid background in music theory as analysts who  determine 
the features (they call them 'genes') of a song. These analysts are given over 150 hours of 
training. Once trained they spend an average of 20-30 minutes analyzing a song to determine 
its genes/features.  Many of these genes are technical

CONTENT BASED FILTERING & CLASSIFICATION
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The analyst provides values for over 400 genes. Its a very labor intensive process and 
approximately 15,000 new songs are added per month.

The importance of selecting appropriate values
Consider two genes that Pandora may have used: genre and mood. The values of these might 
look like this:

So a genre value of 4 means ‘Soul’ and a mood value of 3 means ‘passion’. Suppose I have a 
rock song that is melancholy—for example the gag-inducing You’re Beautiful by James Blunt.   
In 2D space, inked quickly on paper, that would look as follows:

4-4

NOTE: The Pandora algorithms are proprietary and I have 
no knowledge as to how they work. What follows is not a 
description of how Pandora works but rather an explanation 
of how to construct a similar system.

genregenre

Country 1

Jazz 2

Rock 3

Soul 4

Rap 5

MoodMood

Melancholy 1

joyful 2

passion 3

angry 4

unknown 5



Let's say Tex just absolutely loves You're Beautiful and we would like to recommend a song to 
him. 

CONTENT BASED FILTERING & CLASSIFICATION
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That “You’re Beautiful” 
is so sad and beautiful. I 
love it!

FACT:
In a Rolling Stone poll on the 

Most Annoying Songs ever, 

You’re Beautiful placed #7!



Let me populate our dataset with more songs. Song 1 is a jazz song that is melancholy; Song 2  
is a soul song that is angry and Song 3 is a jazz song that is angry. Which would you 
recommend to Tex?

I hope you see that we have a fatal flaw in our scheme. Let's take a look at the possible values 
for our variables again:

If we are trying to use any distance metrics with this scheme we are saying that jazz is closer 
to rock than it is to soul (the distance between jazz and rock is 1 and the distance between 

MoodMood

melancholy 1

joyful 2

passion 3

angry 4

unknown 5

genregenre

Country 1

Jazz 2

Rock 3

Soul 4

Rap 5
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jazz and soul is 2). Or melancholy is closer to joyful than it is to angry. Even when we 
rearrange values the problem remains.

Re-ordering does not solve the problem.  No matter how we rearrange the values this won't 
work. This shows us that we have chosen our features poorly. We want features where the 
values fall along a meaningful scale. We can easily fix our genre feature by dividing it into 5 
separate features—one for country, another for jazz, etc. 

They all can be on a 1-5 scale—how 'country' is the 
sound of this track—‘1’ means no hint of country to ‘5’ 
means this is a solid country sound. Now the scale 
does mean something. If we are trying to find a song 
similar to one that rated a country value of ‘5’, a song 
that rated a country of ‘4’ would be closer than one of 
a ‘1’.

MoodMood

melancholy 1

angry 2

passion 3

joyful 4

unknown 5

genregenre

Country 1

Jazz 2

Soul 3

Rap 4

Rock 5
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This is exactly how Pandora constructs its gene set. The values of most genes are on a scale of 
1-5 with ½ integer increments. Genes are arranged into categories. For example, there is a 
musical qualities category which contains genes for Blues Rock Qualities, Folk Rock 
Qualities, and Pop Rock Qualities among others. Another category is instruments with genes 
such as Accordion, Dirty Electric Guitar Riffs and Use of Dirty Sounding Organs. Using these 
genes, each of which has a well-defined set of values from 1 to 5, Pandora represents each 
song as a vector of 400 numeric values (each song is a point in a 400 dimensional space). 
Now Pandora can make recommendations (that is, decide to play a song on a user-defined 
radio station) based on standard distance functions like those we already have seen. 

A simple example
Let us create a simple dataset so we can explore this approach. Suppose we have seven 
features each one ranging from 1-5 in ½ integer increments (I admit this isn't a very rational 
nor complete selection):

Amount of piano 1 indicates lack of piano; 5 indicates piano 
throughout and featured prominently 

Amount of vocals 1 indicates lack of vocals; 5 indicates prominent 
vocals throughout song.

Driving beat Combination of constant tempo, and how the drums 
& bass drive the beat.

Blues Influence
Presence of dirty electric 
guitar
Presence of backup vocals
Rap Influence

Now, using those features I rate ten tunes:
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Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1

Todd Snider/ 
Don't Tempt Me

4 5 4 4 1 5 1

The Black Keys/ 
Magic Potion

1 4 5 3.5 5 1 1

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1

Black Eyed Peas/ 
Rock that Body

2 5 5 1 2 2 4

La Roux/ 
Bulletproof

5 5 4 2 1 1 1

Mike Posner/ 
Cooler than me

2.5 4 4 1 1 1 1

Lady Gaga/ 
Alejandro

1 5 3 2 1 2 1

Thus, each tune is represented as a list of numbers and we can use any distance function to 
compute the distance between tunes. For example,  The Manhattan Distance between Dr. 
Dog’s Fate and Phoenix’s Lisztomania is:

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Distance 0.5 1 1.5 0 3 3 0

summing those distances gives us a Manhattan Distance of 9.

CONTENT BASED FILTERING & CLASSIFICATION
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s sharpen your pencil

I am trying to find out what tune is closest to Glee’s rendition of 
Jessie’s Girl using Euclidean Distance.  Can you finish the following 
table and determine what group is closest?

distance to Glee’s 
Jessie’s Girl

Dr. Dog/ Fate

Phoenix/ Lisztomania

Heartless Bastards / 
Out at Sea

Todd Snider/ Don't Tempt Me

The Black Keys/ Magic Potion

Glee Cast/ Jessie's Girl

Black Eyed Peas/ Rock that Body

La Roux/ Bulletproof

Mike Posner/ Cooler than me

Lady Gaga/ Alejandro

??

4.822

4.153

4.387

4.528

0

5.408

6.500

5.701

??
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s sharpen your pencil - solution

distance to Glee’s 
Jessie’s Girl

Dr. Dog/ Fate

Lady Gaga/ Alejandro

2.291

4.387

Recall that the Euclidean Distance between any two objects, x and y, 
which have n attributes is:

                  d(x, y) = (xk − yk )
2

k=1

n

∑

So the Euclidean Distance between Glee and Lady Gaga  

piano vocals beat blues guitar backup rap SUM SQRT

Glee 1 5 3.5 3 4 5 1

Lady 
G

1 5 3 2 1 2 1

(x-y) 0 0 0.5 1 3 3 0

(x-y)2 0 0 0.25 1 9 9 0 19.25 4.387

CONTENT BASED FILTERING & CLASSIFICATION
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Doing it Python Style!
Recall that our data for social filtering was of the format:

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, 
! ! !     "Norah Jones": 4.5, "Phoenix": 5.0, 
                      "Slightly Stoopid": 1.5, "The Strokes": 2.5, 
                      "Vampire Weekend": 2.0},       
         "Bill":     {"Blues Traveler": 2.0, "Broken Bells": 3.5, 
                      "Deadmau5": 4.0, "Phoenix": 2.0, 
                      "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}}

We can represent this current data in a similar way:

music = {"Dr Dog/Fate": {"piano": 2.5, "vocals": 4, "beat": 3.5, 
                         "blues": 3, "guitar": 5, "backup vocals": 4,       
                         "rap": 1},         
!    "Phoenix/Lisztomania": {"piano": 2, "vocals": 5, "beat": 5,  
                                 "blues": 3, "guitar": 2, 
                                 "backup vocals": 1, "rap": 1},         
!    "Heartless Bastards/Out at Sea": {"piano": 1, "vocals": 5, 
                                           "beat": 4, "blues": 2, 
! ! ! ! ! !        "guitar": 4, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !   
         "Todd Snider/Don't Tempt Me": {"piano": 4, "vocals": 5, 
                                        "beat": 4, "blues": 4, 
! ! ! ! ! !     "guitar": 1, 
                                        "backup vocals": 5, "rap": 1},         
!    "The Black Keys/Magic Potion":{"piano": 1, "vocals": 4, 
                                           "beat": 5, "blues": 3.5, 
! ! ! ! ! !        "guitar": 5, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !       
         "Glee Cast/Jessie's Girl": {"piano": 1, "vocals": 5, 
                                     "beat": 3.5, "blues": 3, 
! ! ! ! ! !  "guitar":4, "backup vocals": 5, 
                                     "rap": 1},         
!    "La Roux/Bulletproof": {"piano": 5, "vocals": 5, "beat": 4, 
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                                 "blues": 2, "guitar": 1, 
                                 "backup vocals": 1, "rap": 1},         
!    "Mike Posner": {"piano": 2.5, "vocals": 4, "beat": 4, 
                         "blues": 1, "guitar": 1, "backup vocals": 1, 
                         "rap": 1},         
!    "Black Eyed Peas/Rock That Body": {"piano": 2, "vocals": 5, 
                                            "beat": 5, "blues": 1, 
! ! ! ! ! ! !   "guitar": 2, 
                                            "backup vocals": 2, 
                                            "rap": 4},         !   
         "Lady Gaga/Alejandro": {"piano": 1, "vocals": 5, "beat": 3,  
                                 "blues": 2, "guitar": 1, 
                                 "backup vocals": 2, "rap": 1}}

Now suppose I have a friend who says he likes the Black Keys Magic Potion. I can plug that 
into my handy Manhattan distance function:

>>> computeNearestNeighbor('The Black Keys/Magic Potion', music) 

[(4.5, 'Heartless Bastards/Out at Sea'), (5.5, 'Phoenix/Lisztomania'), 
(6.5, 'Dr Dog/Fate'), (8.0, "Glee Cast/Jessie's Girl"), (9.0, 'Mike 
Posner'), (9.5, 'Lady Gaga/Alejandro'), (11.5, 'Black Eyed Peas/Rock 
That Body'), (11.5, 'La Roux/Bulletproof'), (13.5, "Todd Snider/Don't 
Tempt Me")]

and I can recommend to him Heartless Bastard's Out at Sea. This is actually a pretty good 
recommendation. 

CONTENT BASED FILTERING & CLASSIFICATION
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Answering the question “Why?”
When Pandora recommends something it explains 
why you might like it:

We can do the same.  Remember our friend who liked The Black Keys Magic Potion and we 
recommended Heartless Bastards Out at Sea. What features influenced that 
recommendation?  We can compare the two feature vectors:

Piano Vocals Driving 
beat

Blues 
infl.

Dirty elec. 
Guitar

Backup 
vocals

Rap 
infl.

Black Keys
Magic Potion

1 5 4 2 4 1 1

Heartless Bastards
Out at Sea

1 4 5 3.5 5 1 1

difference 0 1 1 1.5 1 0 0

The features that are closest between the two tunes are piano, presence of backup vocals, and 
rap influence—they all have a distance of zero. However, all are on the low end of the scale: 
no piano, no presence of backup vocals, and no rap influence and it probably would not be 
helpful to say “We think you would like this tune because it lacks backup vocals.” Instead, we 
will focus on what the tunes have in common on the high end of the scale.
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We think you might like Heartless Bastards Out 
at Sea because it has a driving beat and 
features vocals and dirty electric guitar.

Because  our data set has few features, and is not well-balanced, the other recommendations 
are not as compelling:

>>> computeNearestNeighbor("Phoenix/Lisztomania", music) 

[(5, 'Heartless Bastards/Out at Sea'), (5.5, 'Mike Posner'), (5.5, 'The 
Black Keys/Magic Potion'), (6, 'Black Eyed Peas/Rock That Body'), (6, 
'La Roux/Bulletproof'), (6, 'Lady Gaga/Alejandro'), (8.5, "Glee Cast/
Jessie's Girl"), (9.0, 'Dr Dog/Fate'), (9, "Todd Snider/Don't Tempt 
Me")]

>>> computeNearestNeighbor("Lady Gaga/Alejandro", music) 

[(5, 'Heartless Bastards/Out at Sea'), (5.5, 'Mike Posner'), (6, 'La 
Roux/Bulletproof'), (6, 'Phoenix/Lisztomania'), (7.5, "Glee Cast/
Jessie's Girl"), (8, 'Black Eyed Peas/Rock That Body'), (9, "Todd 
Snider/Don't Tempt Me"), (9.5, 'The Black Keys/Magic Potion'), (10.0, 
'Dr Dog/Fate')]

That Lady Gaga recommendation is particularly bad.

CONTENT BASED FILTERING & CLASSIFICATION
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A problem of scale
Suppose I want to add another feature to my set. This time I will add beats per minute (or 
bpm). This makes some sense—I might like fast beat songs or slow ballads. Now my data 
would look like this:

Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

bpm

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1 140
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1 110

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1 130

The Black 
Keys/ 
Magic Potion

1 4 5 3.5 5 1 1 88

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1 120

Bad Plus/ 
Smells like 
Teen Spirit

5 1 2 1 1 1 1 90

Without using beats per minute, the closest match to The Black Keys’ Magic Potion is 
Heartless Bastards’ Out to Sea and the tune furthest away is Bad Plus’s version of Smells Like  
Teen Spirit.  However, once we add beats per minute, it wrecks havoc with our distance 
function—bpm dominates the calculation. Now Bad Plus is closest to The Black Keys simply 
because the bpm of the two tunes are close.
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Consider another example. Suppose I have a dating site and I have the weird idea that the 
best attributes to match people up by are salary and age.

Here the scale for age ranges from 25 to 53 for a difference of 28 and the salary scale ranges 
from 43,000 to 115,000 for a difference of 72,000. Because these scales are so different, 
salary dominates any distance calculation. If we just tried to eyeball matches we might 
recommend David to Yun since they are the same age and their salaries are fairly close. 
However, if we went by any of the distance formulas we have covered,  53-year old Brian 
would be the person recommended to Yun. This does not look good for my fledgling dating 
site. 

In fact, this difference in scale 

among attributes is a big problem 

for any recommendation system.

Arghhhh.

CONTENT BASED FILTERING & CLASSIFICATION
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guysguysguys

name age salary

Brian A 53 70,000

Abdullah K 25 105,000

David A 35 69,000

Michael W 48 43,000

galsgalsgals

name age salary

Yun L 35 75,000

Allie C 52 55,000

Daniela C 27 45,000

Rita A 37 115,000



Normalization 
  

No need to panic. 

Relax. 

The solution is normalization!
To remove this bias we need to 
standardize or normalize the data. 
One common method of 
normalization involves having the 
values of each feature range from 0 
to 1.  

For example, consider the salary attribute in our dating example. The minimum salary was 
43,000 and the max was 115,000. That makes the range from minimum to maximum 
72,000. To convert each value to a value in the range 0 to 1 we subtract the minimum from 
the value and divide by the range.

So the normalized value for Yun is 

(75,000 - 43,000) / 72,000 = 0.444

Depending on the dataset this rough method of 
normalization may work well. 

galsgalsgals

name salary normalized 
salary

Yun L 75,000 0.444

Allie C 55,000 0.167

Daniela C 45,000 0.028

Rita A 115,000 1.0
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Shhh. I’m 
normalizing



If you have taken a statistics course you will be familiar with more accurate methods for 
standardizing data.  For example,  we can use what is called The Standard Score which can be 
computed as follows

Standard Deviation is

                                                    sd =
(xi − x)

2

i
∑
card(x)

card(x) is the cardinality of x—that is, how many values there are.
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 We can standardize a value using the  
 Standard Score (aka  z-score) which  
 tells us how many deviations the 
 value is from the mean! 

 
 (each value)  - (mean)
                            = Standard 
 (standard deviation)       Score

By the way,  if you are rusty with 
statistics and like manga be sure to check out the awesome book “The 
Manga Guide to Statistics” by Shin Takahashi.



Consider the data from the dating site example a few pages back. 

The sum of all the salaries is 577,000. Since there are 8 people, the 
mean is 72,125.

Now let us compute the standard deviation:

sd =
(xi − x)

2

i
∑
card(x)

so that would be 

(75,000 − 72,125)2 + (55,000 − 72,125)2 + (45,000 − 72,125)2 + ...
8

= 8,265,625 + 293,265,625 + 735,765,625 + ...
8

= 602,395,375

= 24,543.01

name salary

Yun L 75,000

Allie C 55,000

Daniela C 45,000

Rita A 115,000

Brian A 70,000

Abdullah K 105,000

David A 69,000

Michael W 43,000
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Yun’s salary              Allie’s salary            Daniela’s salary      etc.



Again, the standard score is

 

So the Standard Score for Yun’s salary is

75000 − 72125
24543.01

= 2875
24543.01

= 0.117

s sharpen your pencil

Can you compute the Standard Scores for the following people?

CONTENT BASED FILTERING & CLASSIFICATION
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(each value) - (mean)

(standard deviation)

name salary Standard 
Score

Yun L 75,000 0.117
Allie C 55,000

Daniela C 45,000
Rita A 115,000



The problem with using Standard Score
The problem with the standard score is that it is greatly influenced by outliers. For example, 
if all the 100 employees of LargeMart make $10/hr but the CEO makes six million a year the 
mean hourly wage is  

( 100 * $10  + 6,000,000 / (40 * 52)) / 101 

= (1000 + 2885) / 101  =  $38/hr. 

s sharpen your pencil — solution

Can you compute the Standard Scores for the following people?

                                                      Allie:  
                                                     (55,000 - 72,125) / 24,543.01
                                                     = -0.698

                                                      Daniela:
                                                      (45,000 - 72,125) / 24,543.01
                                                      = -1.105

                 Rita:
                 (115,000 - 72,125) / 24,543.01
                 = 1.747
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name salary Standard 
Score

Yun L 75,000 0.117
Allie C 55,000 -0.698

Daniela C 45,000 -1.105
Rita A 115,000 1.747



Not a bad average wage at LargeMart.  As you can see, the mean is greatly influenced by 
outliers.    

Because of this problem with the mean, the standard score formula is often modified. 

Modified Standard Score

CONTENT BASED FILTERING & CLASSIFICATION
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To compute the Modified Standard 
Score you replace the mean in the 
above formula by the median (the 
middle value) and replace the standard 
deviation by what is called the 
absolute standard deviation:

asd = 1
card(x)

xi − µ
i
∑

where � is the median.

Modified Standard Score:

(each value) - (median)

(absolute standard deviation)

To compute the median you arrange 
the values from lowest to highest and 
pick the middle value. If there are an 
even number of values the median is 
the average of the two middle values.



Okay, let’s give this a try. In the table on the right I’ve 
arranged our salaries from lowest to highest. Since there 
are an equal number of values, the median is the average 
of the two middle values:

median = (69,000 + 70,000)
2

= 69,500

The absolute standard deviation is

asd = 1
8
( 43,000 − 69,500 + 45,000 − 69,500 + 55,000 − 69,500) + ...)

= 1
8
(26,500 + 24,500 +14,500 + 500 + ...)

= 1
8
(153,000) = 19,125

Now let us compute the Modified Standard Score for Yun.                                

      

mss = (75,000 − 69,500)
19,125

= 5,500
19,125

= 0.2876

Name Salary

Michael W

Daniela C

Allie C

David A

Brian A

Yun L

Abdullah K

Rita A

43,000

45,000

55,000

69,000

70,000

75,000

105,000

115,000

4-24

asd = 1
card(x)

xi − µ
i
∑

Modified Standard Score:

(each value) - (median)

(absolute standard deviation)



s sharpen your pencil

The following table shows the play count of various tracks I played. Can 
you standardize the values using the Modified Standard Score?

CONTENT BASED FILTERING & CLASSIFICATION
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track play 
count

modified 
standard 

score

Power/Marcus Miller 21

I Breathe In, I 
Breathe Out/
Chris Cagle

15

Blessed / Jill Scott 12

Europa/Santana 3

Santa Fe/ Beirut 7



s sharpen your pencil — solution

The following table shows the play count of various tracks I played. Can 
you standardize the values using the Modified Standard Score?

Step 1. Computing the median.
I put the values in order (3, 7, 12, 15, 21) and select the middle value, 12.
The median µ is 12.

Step 2. Computing the Absolute Standard Deviation.

asd = 1
5
( 3−12 + 7 −12 + 12 −12 + 15 −12 + 21−12 )

= 1
5
(9 + 5 + 0 + 3+ 9) = 1

5
(26) = 5.2

Step 3. Computing the Modified Standard Scores.

Power / Marcus Miller:  (21 - 12) / 5.2 =  9/5.2 = 1.7307692

I Breathe In, I Breathe Out / Chris Cagle: (15 - 12) / 5.2 = 3/5.2 = 0.5769231

Blessed / Jill Scott: (12 - 12) / 5.2 = 0

Europa / Santana: (3 - 12) / 5.2 = -9 / 5.2 = -1.7307692

Santa Fe / Beirut: (7 - 12) / 5.2 = - 5 / 5.2 = -0.961538
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To normalize or not.
Normalization makes sense when the scale of the features—the scales of the different 
dimensions—significantly varies. In the music example earlier in the chapter there were a 
number of features that ranged from one to five and then beats-per-minute that could 
potentially range from 60 to 180. In the dating example, there was also a mismatch of scale 
between the features of age and salary. 

Suppose I am dreaming of being rich and looking at homes in the Santa Fe, New Mexico area.   

The table on the left shows a few recent 
homes on the market.

Here we see the problem again. Because 
the scale of one feature (in this case asking  
price) is so much larger than others it will 
dominate any distance calculation. Having  
two bedrooms or twenty will not have 
much of an effect on the total distance 
between two homes.

Consider a person giving thumbs up and thumbs down ratings to news articles on a news 
site. Here a list representing a user’s ratings consists of binary values (1 = thumbs up; 0 = 
thumbs down):

asking 
price

bedrooms bathrooms sq. ft.

$1,045,000 2 2.0 1,860
$1,895,000 3 4.0 2,907
$3,300,000 6 7.0 10,180
$6,800,000 5 6.0 8,653
$2,250,000 3 2.0 1,030

CONTENT BASED FILTERING & CLASSIFICATION
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We should normalize when

1. our data mining method calculates the distance 
between two entries based on the values of their 
features.

2. the scale of the different features is different 
(especially when it is drastically different—for ex., 
the scale of asking price compared to the scale of 
the number of bedrooms). 



Bill = {0, 0, 0, 1, 1, 1, 1, 0, 1, 0 …  }

Obviously there is no need to normalize this data. What about the Pandora case: all variables 
lie on a scale from 1 to 5 inclusive. Should we normalize or not?  It probably wouldn't hurt the  
accuracy of the algorithm if we normalized, but keep in mind that there is a computational 
cost involved with normalizing. In this case, we might empirically compare results between 
using the regular and normalized data and select the best performing approach. Later in this 
chapter we will see a case where normalization reduces accuracy.

Back to Pandora
In the Pandora inspired example, we had each song represented by a number of attributes. If 
a user creates a radio station for Green Day we decide what to play based on a nearest 
neighbor approach.  Pandora allows a user to give a particular tune a thumbs up or thumbs 
down rating. How do we use the information that a user gives a thumbs up for a particular 
song.?

Suppose I use 2 attributes for songs: the amount of dirty guitar and the presence of a driving 
beat both rated on a 1-5 scale. A user has given the thumbs up to 5 songs indicating he liked 
the song (and indicated on the following chart with a 'L'); and a thumbs down to 5 songs 
indicating he disliked the song (indicated by a 'D').  

Do you think the user will like or dislike the song indicated by the ‘?’ in this chart?
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I am guessing you said he would like the song. We base this on the fact that the ‘?’ is closer to 
the Ls in the chart than the Ds. We will spend the rest of this chapter and the next describing 
computational approaches to this idea.  The most obvious approach is to find the nearest 
neighbor of the “?” and predict that it will share the class of the nearest neighbor. The 
question mark’s nearest neighbor is an L so we would predict that the ‘? tune’ is something 
the user would like.

 The Python nearest neighbor classifier code
Let's use the example dataset I used earlier—ten tunes rated on 7 attributes (amount of 
piano, vocals, driving beat, blues influence, dirty electric guitar, backup vocals, rap 
influence). 

Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1

Todd Snider/ 
Don't Tempt Me

4 5 4 4 1 5 1

The Black Keys/ 
Magic Potion

1 4 5 3.5 5 1 1

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1

Black Eyed Peas/ 
Rock that Body

2 5 5 1 2 2 4

La Roux/ 
Bulletproof

5 5 4 2 1 1 1

Mike Posner/ 
Cooler than me

2.5 4 4 1 1 1 1

Lady Gaga/ 
Alejandro

1 5 3 2 1 2 1

CONTENT BASED FILTERING & CLASSIFICATION
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Earlier in this chapter we developed a Python representation of this data:

music = {"Dr Dog/Fate": {"piano": 2.5, "vocals": 4, "beat": 3.5, 
                         "blues": 3, "guitar": 5, "backup vocals": 4,       
                         "rap": 1},         
!    "Phoenix/Lisztomania": {"piano": 2, "vocals": 5, "beat": 5,  
                                 "blues": 3, "guitar": 2, 
                                 "backup vocals": 1, "rap": 1},         
!    "Heartless Bastards/Out at Sea": {"piano": 1, "vocals": 5, 
                                           "beat": 4, "blues": 2, 
! ! ! ! ! !        "guitar": 4, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !
         "Todd Snider/Don't Tempt Me": {"piano": 4, "vocals": 5, 
                                        "beat": 4, "blues": 4, 
! ! ! ! ! !     "guitar": 1, 
                                        "backup vocals": 5, "rap": 1},        

Here the strings piano, vocals, beat, blues, guitar, backup vocals, and rap occur multiple 
times; if I have a 100,000 tunes those strings are repeated 100,000 times.  I'm going to 
remove those strings from the representation of our data and simply use vectors:

#
#  the item vector represents the attributes: piano, vocals, 
#  beat, blues, guitar, backup vocals, rap
#
items = {"Dr Dog/Fate": [2.5, 4, 3.5, 3, 5, 4, 1],
         "Phoenix/Lisztomania": [2, 5, 5, 3, 2, 1, 1],
         "Heartless Bastards/Out at Sea": [1, 5, 4, 2, 4, 1, 1],
         "Todd Snider/Don't Tempt Me": [4, 5, 4, 4, 1, 5, 1],
         "The Black Keys/Magic Potion": [1, 4, 5, 3.5, 5, 1, 1],
         "Glee Cast/Jessie's Girl": [1, 5, 3.5, 3, 4, 5, 1],
         "La Roux/Bulletproof": [5, 5, 4, 2, 1, 1, 1],
         "Mike Posner": [2.5, 4, 4, 1, 1, 1, 1],
         "Black Eyed Peas/Rock That Body": [2, 5, 5, 1, 2, 2, 4],
         "Lady Gaga/Alejandro": [1, 5, 3, 2, 1, 2, 1]}
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In linear algebra, a vector is 
a quantity that has magnitude and 
direction.
Various well defined operators can 
be performed on vectors including 
adding and subtracting vectors and 
scalar multiplication.

In data mining, a vector 
is simply a list of numbers 
that represent the 
attributes of an object. The 
example on the previous page 
represented attributes of a 
song as a list of numbers. 
Another example, would be 
representing a text document 
as a vector—each position of 
the vector would represent a 
particular word and the 
number at that position 
would represent how many 
times that word occurred in 
the text. 

Plus, using the 
word “vector” instead 
of “list of 
attributes” is cool!

Once we define attributes 
this way, we can perform 
vector operations (from 
linear algebra) on them.



In addition to representing the attributes of a song as a vector, I need to represent the 
thumbs up/ thumbs down ratings that users gives to songs. Because each user doesn't rate all 
songs (sparse data) I will go with the dictionary of dictionaries approach:

users = {"Angelica": {"Dr Dog/Fate": "L", "Phoenix/Lisztomania": "L", 
                      "Heartless Bastards/Out at Sea": "D", 
                      "Todd Snider/Don't Tempt Me": "D", 
                      "The Black Keys/Magic Potion": "D", 
                      "Glee Cast/Jessie's Girl": "L", 
                      "La Roux/Bulletproof": "D", 
                      "Mike Posner": "D", 
                      "Black Eyed Peas/Rock That Body": "D", 
                      "Lady Gaga/Alejandro": "L"},         
         "Bill":  {"Dr Dog/Fate": "L", "Phoenix/Lisztomania": "L", 
                   "Heartless Bastards/Out at Sea": "L", 
                   "Todd Snider/Don't Tempt Me": "D",                      
                   "The Black Keys/Magic Potion": "L", 
                   "Glee Cast/Jessie's Girl": "D", 
                   "La Roux/Bulletproof": "D", "Mike Posner": "D",                       
                   "Black Eyed Peas/Rock That Body": "D", 
                   "Lady Gaga/Alejandro": "D"}             }

My way of representing ‘thumbs up’ as L  for  like and ‘thumbs down’ as D is arbitrary. You 
could use 0 and 1, like and dislike.

 In order to use the new vector format for songs I need to revise the Manhattan Distance and 
the computeNearestNeighbor functions.

def manhattan(vector1, vector2):    
   """Computes the Manhattan distance."""    
   distance = 0 
   total = 0 
   n = len(vector1)    
   for i in range(n):        
      distance += abs(vector1[i] - vector2[i])        
   return distance 
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def computeNearestNeighbor(itemName, itemVector, items):    
   """creates a sorted list of items based on their distance to item"""   
   distances = []    
   for otherItem in items:        
      if otherItem != itemName:            
         distance = manhattan(itemVector, items[otherItem])            
         distances.append((distance, otherItem))    
   # sort based on distance -- closest first    
   distances.sort()    
   return distances

Finally, I need to create a classify function. I want to predict how a particular user would rate 
an item represented by itemName and itemVector. For example:

"Chris Cagle/ I Breathe In. I Breathe Out"  [1, 5, 2.5, 1, 1, 5, 1]

(NOTE: To better format the Python example below, I will use the string Cagle to represent 
that singer and song pair.)

The first thing the function needs to do is find the nearest neighbor of this Chris Cagle tune. 
Then it needs to see how the user rated that nearest neighbor and predict that the user will 
rate Chris Cagle the same. Here's my rudimentary classify function:

def classify(user, itemName, itemVector):    
   """Classify the itemName based on user ratings       
   Should really have items and users as parameters"""    
   # first find nearest neighbor    
   nearest = computeNearestNeighbor(itemName, itemVector, items)[0][1]    
   rating = users[user][nearest]    
   return rating

Ok. Let's give this a try. I wonder if Angelica will like Chris Cagle's I Breathe In, I Breathe 
Out?

classify('Angelica', 'Cagle', [1, 5, 2.5, 1, 1, 5, 1])
"L"

We are predicting she will like it!  Why are we predicting that?

CONTENT BASED FILTERING & CLASSIFICATION
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computeNearestNeighbor('Angelica', 'Cagle', [1, 5, 2.5, 1, 1, 5, 1])

[(4.5, 'Lady Gaga/Alejandro'), (6.0, "Glee Cast/Jessie's Girl"), (7.5, 
"Todd Snider/Don't Tempt Me"), (8.0, 'Mike Posner'), (9.5, 'Heartless 
Bastards/Out at Sea'), (10.5, 'Black Eyed Peas/Rock That Body'), (10.5, 
'Dr Dog/Fate'), (10.5, 'La Roux/Bulletproof'), (10.5, 'Phoenix/
Lisztomania'), (14.0, 'The Black Keys/Magic Potion')]

We are predicting that Angelica will like Chris Cagle's I Breathe In, I Breathe Out because 
that tune's nearest neighbor is Lady Gaga’s Alejandro and Angelica liked that tune.

What we have done here is build a classifier—in this case, our task was to classify tunes as 
belonging to one of two groups—the like group and the dislike group.
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Attention, Attention.
We just built a classifier!!



A classifier is a program that uses an object’s attributes to 
determine what group or class it belongs to!

A classifier uses a set of objects that are already labeled with the class they belong to. It uses 
that set to classify new, unlabeled objects. So in our example, we knew about songs that 
Angelica liked (labeled ‘liked’) and songs she did not like. We wanted to predict whether 
Angelica would like a Chris Cagle tune.

Classifiers can be used in a wide range of applications. The 
following page lists just a few.

CONTENT BASED FILTERING & CLASSIFICATION
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I like Phoenix, Lady 
Gaga and Dr. Dog. I don’t 
like The Black Keys and 

Mike Posner!

First we found a song Angelica  rated that was most similar to the Chris Cagle tune. 
It was Lady Gaga’s Alejandro

Next, we checked whether Angelica liked or disliked the Alejandro—she liked it. So we predict that Angelica will also like the Chris Cagle tune, I Breathe In, I Breathe Out.
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Twitter Sentiment Classification
A number of people are working on 
classifying the sentiment (a positive or 
negative opinion) in tweets. This can be 
used in a variety of ways. For example, if 
Axe releases a new underarm deoderant, 
they can check whether people like it or 
not. The attributes are the words in the 
tweet.

Automatic identification of people in 
photos.
There are apps now that can identify and 
tag your friends in photographs. (And 
the same techniques apply to identifying 
people walking down the street using 
public video cams.) Techniques vary but 
some of them use attributes like the 
relative position and size of a person’s 
eyes, nose, jaw, etc.

Classification for Targeted Political Ads
This is called microtargeting. People are 
classified into such groups as “Barn 
Raisers”, “Inner Compass”, and “Hearth 
Keepers.” Hearth Keepers, for example, 
focus on their family and keep to 
themselves. 

Health and the Quantified Self
It’s the start of the quanitifed self 
explosion. We can now buy simple 
devices like the Fitbit, and the Nike 
Fuelband. Intel and other companies are 
working on intelligent homes that have 
floors that can weigh us, keep track of 
our movements and alert someone if we 
deviate from normal. Experts are 
predicting that in a few years we will be 
wearing tiny compu-patches that can 
monitor dozens of factors in real time 
and make instant classifications.

The list is endless
 
• classifying people as terrorist or 

nonterrorist
 

• automatic classification of email (hey, 
this email looks pretty important; this 
is regular email; this looks like spam)

• predicting medical clinical outcomes

• identifying financial fraud (for ex., 
credit card fraud)

Targeted Marketing
Similar to political microtargeting. 
Instead of a broad advertising campaign 
to sell my expensive Vegas time share 
luxury condos, can I identify likely 
buyers and market just to them? Even 
better if I can identify subgroups of likely  
buyers and I can really tailor my ads to 
specific groups.



What sport?
To give you a preview of what we will be working on in the next few chapters let us work with 
an easier example than those given on the previous page—classifying what sport various 
world-class women athletes play based solely on their height and weight.  In the following 
table I have a small sample dataset drawn from a variety of web sources.

Name Sport Age Height Weight

Asuka Teramoto

Brittainey Raven

Chen Nan

Gabby Douglas

Helalia Johannes

Irina Miketenko

Jennifer Lacy

Kara Goucher

Linlin Deng

Nakia Sanford

Nikki Blue

Qiushuang Huang

Rebecca Tunney

Rene Kalmer

Shanna Crossley

Shavonte Zellous

Tatyana Petrova

Tiki Gelana

Valeria Straneo

Viktoria Komova

Gymnastics 16 54 66

Basketball 22 72 162

Basketball 30 78 204

Gymnastics 16 49 90

Track 32 65 99

Track 40 63 106

Basketball 27 75 175

Track 34 67 123

Gymnastics 16 54 68

Basketball 34 76 200

Basketball 26 68 163

Gymnastics 20 61 95

Gymnastics 16 58 77

Track 32 70 108

Basketball 26 70 155

Basketball 24 70 155

Track 29 63 108

Track 25 65 106

Track 36 66 97

Gymnastics 17 61 76

CONTENT BASED FILTERING & CLASSIFICATION
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The gymnastic data lists some of the top participants in the 2012 and 2008 Olympics. The 
basketball players play for teams in the WNBA.  The women track stars were finishers in the 
2012 Olympic marathon . Granted this is a trivial example but it will allow us to apply some 
of the techniques we have learned.

As you can see, I've included age in the table. Just scanning the data you can see that age 
alone is a moderately good predictor.  Try to guess the sports of these athletes.

     

4-38

Candace Parker; Age 26

McKayla Maroney; Age 16

Olivera Jevtić: Age 35

Lisa Jane Weightman; Age 34



The answers
Candace Parker plays basketball for the WNBA’s Los Angeles Sparks and Russia’s UMMC 
Ekaterinburg. McKayla Maroney was a member of the U.S. Women’s Gymnastic Team and 
won a Gold and a Silver. Olivera Jevtić is a Serbian long-distance runner who competed in 
the 2008 and 2012 Olympics. Lisa Jane Weightman is an Australian long-distance runner 
who also competed in the 2008 and 2012 Olympics. 

You just performed classification—you predicted the class of objects based on their 
attributes. (In this case, predicting the sport of athletes based on a single attribute, age.)

k brain calisthenics 
        
Suppose I want to guess what sport a person plays based on their height 
and weight. My database is small—only two people. Nakia 
Sanford, the center for the Women’s National Basketball 
Association team Phoenix Mercury, is 6’4” and weighs 
200 pounds. Sarah Beale, a forward on England’s 
National Rugby Team, is 5’10” and weighs 190.
Based on that database, I want to classify Catherine 
Spencer as either a basketball player or rugby player. 
She is 5’10” and weighs 200 pounds. What sport do you 
think she plays?

CONTENT BASED FILTERING & CLASSIFICATION
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k brain calisthenics - cont’d
        
If you said rugby, you would be correct. Catherine Spencer is a forward on 
England’s national team. However, if we based our guess on a distance 
formula like Manhattan Distance we would be wrong. The Manhattan Distance 
between Catherine and Basketball player Nakia is 6 (they weigh the same 
and have a six inch difference in height). The distance between Catherine 
and Rugby player Sarah is 10 (their height is the same and they differ in 
weight by 10 pounds). So we would pick the closest person, Nakia, and 
predict Catherine plays the same sport.

Is there anything we learned that could help us make more accurate 
classifications?
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Hmmm. This rings a 
bell. I think there was 
something related to this 
earlier in the chapter...



Test Data.
Let us remove age from the picture. Here is a group of individuals I would like to classify:

 

k brain calisthenics - cont’d
        

We can use the Modified Standard Score!!!

      (each value) - (median)

      (absolute standard deviation)
            

CONTENT BASED FILTERING & CLASSIFICATION
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Name Sport Height Weight

Crystal Langhorne

Li Shanshan

Kerri Strug

Jaycie Phelps

Kelly Miller

Zhu Xiaolin

Lindsay Whalen

Koko Tsurumi

Paula Radcliffe

Erin Thorn

74 190

64 101

 57 87

` 60 97

 70 140

67 123

69 169

55 75

68 120

69 144

Let’s build a 
classifier!



Python Coding  
Instead of hard-coding the data in the Python code, I decided to put the data for this example 
into two files: athletesTrainingSet.txt and athletesTestSet.txt. 

I am going to use the data in the 
athletesTrainingSet.txt file to build the classifier. 
The data in the athletesTestSet.txt file will be used 
to evaluate this classifier. In other words, each entry  
in the test set will be classified by using all the 
entries in the training set.

 The format of these files looks like this:

 Asuka Teramoto Gymnastics 54  66

 Brittainey Raven  Basketball  72  162

 Chen Nan   Basketball  78  204

 Gabby Douglas  Gymnastics 49  90

Each line of the text represents an object described as a tab-separated list of values.  I want 
my classifier to use a person’s height and weight to predict what sport that person plays. So 
the last two columns are the numerical attributes I will use in the classifier and the second 
column represents the class that object is in. The athlete’s name is not used by the classifier. I 
don’t try to predict what sport a person plays based on their name and I am not trying to 
predict the name from some attributes.

  The data files and the Python 
code are on the book’s website, 
guidetodatamining.com.       
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Hey, you look what... 
maybe five foot eleven 
and 150? I bet your 
name is Clara Coleman.



However, keeping the name might be useful as a means of explaining the classifier’s decision 
to users: “We think Amelia Pond is a gymnast because she is closest in height and weight to 
Gabby Douglas who is a gymnast.” 

As I said, I am going to write my Python code to not be so hard coded to a particular example 
(for example, to only work for the athlete example). To help meet this goal I am going to add 
an initial header line to the athlete training set file that will indicate the function of each 
column.  Here are the first few lines of that file:

 comment   class  num  num

 Asuka Teramoto Gymnastics 54  66

 Brittainey Raven  Basketball  72  162

Any column labeled comment will be ignored by the classifier; a column labeled class 
represents the class of the object, and columns labeled num indicate numerical attributes of 
that object.

k brain calisthenics -
        

How do you think we should represent this data in Python? Here are some 
possibilities (or come up with your own representation).

a dictionary of the form: 
                  {'Asuka Termoto': ('Gymnastics', [54, 66]),
           'Brittainey Raven': ('Basketball', [72, 162]), ...

a list of lists of the form:  
                  [['Asuka Termoto', 'Gymnastics', 54, 66],
           ['Brittainey Raven', 'Basketball', 72, 162], ...

a list of tuples of the form:
                 [('Gymnastics', [54, 66], ['Asuka Termoto']),
           ('Basketball', [72, 162], ['Brittainey Raven'],...

CONTENT BASED FILTERING & CLASSIFICATION
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k brain calisthenics - answer
        

a dictionary of the form: 
                  {'Asuka Termoto': ('Gymnastics', [54, 66]),
           'Brittainey Raven': ('Basketball', [72, 162]), ...

This is not a very good representation of our data. The key for the dictionary is 
the athlete’s name, which we do not even use in the calculations.

a list of lists of the form:  
                  [['Asuka Termoto', 'Gymnastics', 54, 66],
           ['Brittainey Raven', 'Basketball', 72, 162], ...

This is not a bad representation. It mirrors the input file and since the nearest 
neighbor algorithm requires us to iterate through the list of objects, a list makes 
sense.

a list of tuples of the form:
                 [('Gymnastics', [54, 66], ['Asuka Termoto']),
           ('Basketball', [72, 162], ['Brittainey Raven'],... 

I like this representation better than the above since it separates the attributes 
into their own list and makes the division between class, attributes, and comments 
precise. I made the comment (the name in this case) a list since there could be 
multiple columns that are comments.
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My python code that reads in a file and converts it to the format

               [('Gymnastics', [54, 66], ['Asuka Termoto']),
          ('Basketball', [72, 162], ['Brittainey Raven'],... 

looks like this:

class Classifier:

    def __init__(self, filename):

        self.medianAndDeviation = []
        
        # reading the data in from the file
        f = open(filename)
        lines = f.readlines()
        f.close()
        self.format = lines[0].strip().split('\t')
        self.data = []
        for line in lines[1:]:
            fields = line.strip().split('\t')
            ignore = []
            vector = []
            for i in range(len(fields)):
                if self.format[i] == 'num':
                    vector.append(int(fields[i]))
                elif self.format[i] == 'comment':
                    ignore.append(fields[i])
                elif self.format[i] == 'class':
                    classification = fields[i]
            self.data.append((classification, vector, ignore))
        
        

CONTENT BASED FILTERING & CLASSIFICATION
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AssertionError?

See next page

s 
code it

Before we can standardize the 
data using the Modified Standard 
Score we need methods that will 
compute the median and absolute 
standard deviation of numbers 
in a list:

>>> heights = [54, 72, 78, 49, 65, 63, 75, 67, 54]
>>> median = classifier.getMedian(heights)
>>> median 
65
>>> asd = classifier.getAbsoluteStandardDeviation(heights, median)
>>> asd 
8.0

Can you write these methods?

Download the template testMedianAndASD.py to write and test these 
methods at guidetodatamining.com
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Assertion Errors and the Assert statement.
It is important that each component of a solution to a problem be turned into a piece of code 
that implements it and a piece of code that tests it.  In fact, it is good practice to write the test  
code before you write the implementation.  The code template I have provided contains a test  
function called unitTest. A simplified version of that function, showing only one test, is 
shown here:

def unitTest():
    list1 = [54, 72, 78, 49, 65, 63, 75, 67, 54]
    classifier = Classifier('athletesTrainingSet.txt')
    m1 = classifier.getMedian(list1)
    assert(round(m1, 3) == 65)
    print("getMedian and getAbsoluteStandardDeviation work correctly")

The getMedian function you are to complete initially looks like this:

def getMedian(self, alist):
        """return median of alist"""

        """TO BE DONE"""
        return 0

So initially, getMedian returns 0 as the median for any list. You are to complete getMedian 
so it returns the correct value.  In the unitTest procedure, I call getMedian with the list 

[54, 72, 78, 49, 65, 63, 75, 67, 54]

The assert statement in unitTest says the value returned by getMedian should equal 65.  If 
it does, execution continues to the next line and 

getMedian and getAbsoluteStandardDeviation work correctly

is printed. If they are not equal the program terminates with an error:
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File "testMedianAndASD.py", line 78, in unitTest

    assert(round(m1, 3) == 65)

AssertionError

If you download the code from the book’s website and run it without making any changes, 
you will get this error. Once you have correctly implemented getMedian and 
getAbsoluteStandardDeviation this error will disappear.

This use of assert as a means of testing software components is a common technique among 
software developers.

“it is important that each part of the specification be turned into a piece of code that 
implements it and a test that tests it. If you don’t have tests like these then you don’t know 
when you are done,  you don’t know if you got it right, and you don’t know that any future 
changes might be breaking something.” - Peter Norvig
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Solution
Here is one way of writing these algorithms:

  def getMedian(self, alist):
        """return median of alist"""
        if alist == []:
            return []
        blist = sorted(alist)
        length = len(alist)
        if length % 2 == 1:
            # length of list is odd so return middle element
            return blist[int(((length + 1) / 2) -  1)]
        else:
            # length of list is even so compute midpoint
            v1 = blist[int(length / 2)]
            v2 =blist[(int(length / 2) - 1)]
            return (v1 + v2) / 2.0
        

    def getAbsoluteStandardDeviation(self, alist, median):
        """given alist and median return absolute standard deviation"""
        sum = 0
        for item in alist:
            sum += abs(item - median)
        return sum / len(alist)

As you can see my getMedian method first sorts the list before finding the median. Because I 
am not working with huge data sets I think this is a fine solution. If I wanted to optimize my 
code, I might replace this with a selection algorithm.

Right now, the data is read from the file athletesTrainingSet.txt and stored in the list data in 
the classifier with the following format:

[('Gymnastics', [54, 66], ['Asuka Teramoto']), 
 ('Basketball', [72, 162], ['Brittainey Raven']), 
 ('Basketball', [78, 204], ['Chen Nan']), 
 ('Gymnastics', [49, 90], ['Gabby Douglas']), ...

CONTENT BASED FILTERING & CLASSIFICATION

4-49



Now I would like to normalize the vector so the list data in the classifier contains normalized 
values. For example,

[('Gymnastics', [-1.93277, -1.21842], ['Asuka Teramoto']),  
 ('Basketball', [1.09243, 1.63447], ['Brittainey Raven']), 
 ('Basketball', [2.10084, 2.88261], ['Chen Nan']),
 ('Gymnastics', [-2.77311, -0.50520], ['Gabby Douglas']), 
 ('Track', [-0.08403, -0.23774], ['Helalia Johannes']), 
 ('Track', [-0.42017, -0.02972], ['Irina Miketenko']), 

To do this I am going to add the following lines to my init method:

        # get length of instance vector
        self.vlen = len(self.data[0][1])
        # now normalize the data
        for i in range(self.vlen):
            self.normalizeColumn(i)

In the for loop we want to normalize the data, column by column. So the first time through 
the loop we will normalize the height column, and the next time through, the weight column.

s code it

Can you write the normalizeColumn method?

Download the template normalizeColumnTemplate.py to write and test 
this method at guidetodatamining.com
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Solution

Here is an implementation of the normalizeColumn method:

   def normalizeColumn(self, columnNumber):
     """given a column number, normalize that column in self.data"""
     # first extract values to list
     col = [v[1][columnNumber] for v in self.data]
     median = self.getMedian(col)
     asd = self.getAbsoluteStandardDeviation(col, median)
     #print("Median: %f   ASD = %f" % (median, asd))     
     self.medianAndDeviation.append((median, asd))
     for v in self.data:
        v[1][columnNumber] = (v[1][columnNumber] - median) / asd

You can see I also store the median and absolute standard deviation of each column in the 
list medianAndDeviation.  I use this information when I want to use the classifier to 
predict the class of a new instance.  For example, suppose I want to predict what sport is 
played by Kelly Miller, who is 5 feet 10 inches and weighs 170. The first step is to convert her 
height and weight to Modified Standard Scores. That is, her original attribute vector is [70, 
140]. 

After processing the training data, the value of meanAndDeviation is

[(65.5, 5.95), (107.0, 33.65)]

meaning the data in the first column of the vector has a median of 65.5 and an absolute 
standard deviation of 5.95; the second column has a median of 107 and a deviation of 33.65.

I use this info to convert the original vector [70,140] to one containing Modified Standard 
Scores.  This computation for the first attribute is

 

mss = xi − !x
asd

= 70 − 65.5
5.95

= 4.5
5.95

= 0.7563

CONTENT BASED FILTERING & CLASSIFICATION

4-51



and the second:

 
mss = xi − !x

asd
= 140 −107

33.65
= 33
33.65

= 0.98068

The python method that does this is:

    def normalizeVector(self, v):
        """We have stored the median and asd for each column.
        We now use them to normalize vector v"""
        vector = list(v)
        for i in range(len(vector)):
            (median, asd) = self.medianAndDeviation[i]
            vector[i] = (vector[i] - median) / asd
        return vector

The final bit of code to write is the part that predicts the class of a new instance—in our 
current example, the sport a person plays.  To determine the sport played by Kelly Miller, 
who is 5 feet 10 inches (70 inches) and weighs 170 we would call

    classifier.classify([70, 170])

In my code, classify is just a wrapper method for nearestNeighbor:

 def classify(self, itemVector):
   """Return class we think item Vector is in"""
   return(self.nearestNeighbor(self.normalizeVector(itemVector))[1][0])

s code it
 
Can you write the nearestNeighbor method? (for my solution, I wrote an 
additional method, manhattanDistance.)

Yet again, download the template classifyTemplate.py to write and test this method at 
guidetodatamining.com. 
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Solution

The implementation of the nearestNeighbor methods turns out to be very short.

def manhattan(self, vector1, vector2):
   """Computes the Manhattan distance."""
   return sum(map(lambda v1, v2: abs(v1 - v2), vector1, vector2))

def nearestNeighbor(self, itemVector):
   """return nearest neighbor to itemVector"""
   return min([ (self.manhattan(itemVector, item[1]), item) 
                for item in self.data])

That’s it!!!
We have written a nearest neighbor classifier in roughly 200 lines of Python.

CONTENT BASED FILTERING & CLASSIFICATION
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In the complete code which you can download from our website, I have included a function, 
test, which takes as arguments a training set file and a test set file and prints out how well 
the classifier performed. Here is how well the classifier did on our athlete data:

>>> test("athletesTrainingSet.txt", "athletesTestSet.txt")

-         Track  Aly Raisman!       Gymnastics! 62! 115

+    Basketball  Crystal Langhorne!Basketball! 74! 190

+    Basketball  Diana Taurasi! Basketball! 72! 163

<snip>

-         Track  Hannah Whelan! Gymnastics! 63! 117

+    Gymnastics  Jaycie Phelps! Gymnastics! 60! 97

80.00% correct

As you can see, the classifier was 80% accurate.  It performed perfectly on predicting 
basketball players but made four errors between track and gymnastics.

Irises Data Set  
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Sir Fisher was a remarkable person. 
He revolutionized statistics and 
Richard Dawkins called him “the 
greatest biologist since Darwin.”

I also tested our simple classifier on the Iris Data 
Set, arguably the most famous data set used in 
data mining. It was used by Sir Ronald Fisher 
back in the 1930s. The Iris Data Set consists of 50  
samples for each of three species of Irises (Iris 
Setosa, Iris Virginica, and Iris Versicolor). The 
data set includes measurements for two parts of 
the Iris’s flower: the sepal (the green covering of 
the flower bud) and the petals.



The Iris data set looks like this (species is what the classifier is trying to predict):

CONTENT BASED FILTERING & CLASSIFICATION
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All the data sets described in the book are available on the book’s website: 
guidetodatamining.com.  This allows you to download the data and 
experiment with the algorithm. Does normalizing the data improve or 
worsen the accuracy? Does having more data in the training set improve 
results? What effect does switching to Euclidean Distance have?

REMEMBER: Any learning that takes place happens in your brain, not mine. 
The more you interact with the material in the book, the more you will 
learn. 

Sepal 
length

Sepal 
width

Petal 
Length

Petal 
Width

Species

5.1 3.5 1.4 0.2 l.setosa

4.9 3.0 1.4 0.2 l setosa



There were 120 instances in the training set and 30 in the test set (none of the test set 
instances were in the training set).

How well did our classifier do on the Iris Data Set?  

>>> test('irisTrainingSet.data', 'irisTestSet.data')

93.33% correct

Again, a fairly impressive result considering how simple our classifier is. Interestingly, 
without normalizing the data the classifier is 100% accurate.  We will explore this 
normalization problem in more detail in a later chapter.

miles per gallon.
Finally, I tested our classifier on a modified version of another widely used data set, the Auto 
Miles Per Gallon data set from Carnegie Mellon University. It was initially used in the 1983 
American Statistical Association Exposition. The format of the data looks like this

mpg cylinders c.i. HP weight secs. 0-60 make/model

30 4 68 49 1867 19.5 fiat 128

45 4 90 48 2085 21.7 vw rabbit (diesel)

20 8 307 130 3504 12 chevrolet chevelle malibu

In the modified version of the data, we are trying to predict mpg, which is a discrete category 
(with values 10, 15, 20, 25, 30, 35, 40, and 45) using the attributes cylinders, displacement, 
horsepower, weight, and acceleration.
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>>> test('mpgTrainingSet.txt', 'mpgTestSet.txt')

56.00% correct

Without normalization the accuracy is 32%.

CONTENT BASED FILTERING & CLASSIFICATION
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There are 342 instances of 
cars in the training set and 50 
in the test set. If we just 
predicted the miles per gallon 
randomly, our accuracy would 
be 12.5%.

How can we improve the 
accuracy of our predictions?

Will improving the classification 
algorithm help? 

How about increasing the size of 
our training set? 

How about having more attributes.

Tune in to the next chapter to find 
out!



odds and ends
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Heads Up on Normalization

In this chapter we talked the importance 
of normalizing data. This is critical when 
attributes have drastically different 
scales (for example, income and age).  In 
order to get accurate distance 
measurements, we should rescale the 
attributes so they all have the same 
scale.

While most data miners use the term 
‘normalization’ to refer to this rescaling, 
others make a distinction between 
‘normaliza-tion’ and ‘standardization.’ For 
them, normalization means scaling values 
so they lie on a scale from 0 to 1. 
Standardization, on the other hand, 
refers to scaling an attribute so the 
average (mean or median) is 0, and other 
values are deviations from this average 
(standard deviation or absolute standard 
deviation). So for these data miners, 
Standard Score and Modified Standard 
Score are examples of standardization. 

Recall that one way to normalize an attribute on a scale between 0 and 1 is to 
find the minimum (min) and maximum (max) values of that attribute. The 
normalized value of a value is then

        
value−min
max−min     

Let’s compare the accuracy of a 
classifer  that uses this formula over 
one that uses the Modified Standard 



s code it

Can you modify our classifier code so that it normalizes the attributes 
using the formula on our previous page?

You can test its accuracy with our three data sets:
classifier builtclassifier builtclassifier built

data set using no 
normalization

using the formula 
on previous page

using Modified 
Standard Score

Athletes 80.00% ? 80.00%

Iris 100.00% ? 93.33%

MPG 32.00% ? 56.00%

CONTENT BASED FILTERING & CLASSIFICATION
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L You say normalize and I 

say standardize  N You say 

tomato and I say tomato M



     

s my results

Here are my results:

classifier builtclassifier builtclassifier built

data set using no 
normalization

using the formula 
on previous page

using Modified 
Standard Score

Athletes 80.00% 60.00% 80.00%

Iris 100.00% 83.33% 93.33%

MPG 32.00% 36.00% 56.00%

Hmm. These are disappointing results compared with using Modified Standard 
Score.
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It is fun playing with data sets and trying different methods.  
I obtained the Iris and MPG data sets from the UCI 
Machine Learning Repository (archive.ics.uci.edu/ml).
I encourage you to go there, download a data set or two, 
convert the data to match data format, and see how well our  
classifier does. 



Chapter 5: Further Explorations in Classification

Evaluating algorithms and 
kNN

Let us return to the athlete example from the previous chapter.   

In that example we built a classifier which took the 
height and weight of an athlete as input and classified 
that  input by sport—gymnastics, track, or basketball. 

So Marissa Coleman, pictured on the left, is 6 foot 1 
and weighs 160 pounds. Our classifier correctly 
predicts she plays basketball:

>>> cl = Classifier('athletesTrainingSet.txt')

>>> cl.classify([73, 160])

'Basketball'

and predicts that someone 4 foot 9 and 90 pounds is 
likely to be a gymnast:

>>> cl.classify([59, 90])

'Gymnastics'

 



Once we build a classifier, we might be interested in answering some questions about it such 
as:

How can we answer these questions? 

Training set and test set.
At the end of the previous chapter we worked with three different datasets: the women 
athlete dataset, the iris dataset, and the auto miles-per-gallon one. We divided each of these 
datasets in turn into two subsets. One subset we used to construct the classifier. This data set 
is called the training set. The other set was used to evaluate the classifier. That data is called 
the test set.  Training set and test set are common terms in data mining.  
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How good is this 
classifier?How accurate is the 

classifier?

How does this 
classifier compare 
with others?



People in data mining never test with the data they used to train the system. 

You can see why we don't use the training data for testing if we consider the nearest neighbor  
algorithm. If Marissa Coleman the basketball player from the above example, was in our 
training data, she at 6 foot 1 and 160 pounds would be the nearest neighbor of herself. So 
when evaluating a nearest neighbor algorithm, if our test set is a subset of our training data 
we would always be close to 100% accurate.  More generally, in evaluating any data mining 
algorithm, if our test set is a subset of our training data the results will be optimistic and 
often overly optimistic. So that doesn’t seem like a great idea.

How about the idea we used in the last chapter? We divide our data into two parts. The larger  
part we use for training and the smaller part we use for evaluation.  As it turns out that has 
its problems too. We could be extremely unlucky in how we divide up our data. For example, 
all the basketball players in our test set might be short (like Debbie Black who is only 5 foot 3  
and weighs 124 pounds) and get classified as marathoners. And all the track people in the 
test set might be short and lightweight for that sport like Tatyana Petrova (5 foot 3 and 108 
pounds) and get classified as gymnasts. With a test set like this, our accuracy will be poor. On  
the other hand, we could be very lucky in our selection of a test set. Every person in the test 
set is the prototypical height and weight for their respective sports and our accuracy is near 
100%. In either case, the accuracy based on a single test set may not reflect the true accuracy 
when our classifier is used with new data.

A solution to this problem might be to repeat the process a number of times and average the 
results. For example, we might divide the data in half. Let’s call the parts Part 1 and Part 2:

EVALUATION AND KNN
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Data set

Part 1 Part 2



We can use the data in Part 1 to train our classifier and the data in Part 2 to test it. Then we 
will repeat the process, this time training with Part 2 and testing with Part 1.  Finally we 
average the results. One problem with this though, is that we are only using 1/2 the data for 
training during each iteration. But we can fix this by increasing the number of parts. For 
example, we can have three parts and for each iteration we will train on 2/3 of the data and 
test on 1/3. So  it might look like this

iteration 1 train with parts 1 and 2 test with part 3

iteration 2 train with parts 1 and 3 test with part 2

iteration 3 train with parts 2 and 3 test with part 1

Average the results.

In data mining, the most common number of parts is 10, and this method is called ...

10-fold Cross Validation

With this method we have one data set which we divide randomly into 10 parts. We use 9 of 
those parts for training and reserve one tenth for testing. We repeat this procedure 10 times 
each time reserving a different tenth for testing. 

Let’s look at an example. Suppose I want to build a classifier that just answers yes or no to 
the question Is this person a professional basketball player? My data consists of information  
about 500 basketball players and 500 non-basketball players. 
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ten-fold cross validation example:

Step 1, we equally divide the data into 10 buckets:

     

So we will put 50 basketball players in each bucket and 50 non-players. Each bucket holds 
information on 100 individuals.

Step 2, we iterate through the following steps ten times:
 
 2.1.    During each iteration hold back one of the buckets. For iteration 1, we will 
  hold back bucket 1, iteration 2, bucket 2, and so on.

 2.2  We will train the classifier with data from the other buckets. (during the 
  first iteration we will train with the data in buckets 2 through 10). 

 2.3    We will test the classifier we just built using data from the bucket we held
  back and save the results. In our case these results might be:

   35 of the basketball players were classified correctly
   29 of the non basketball players were classified correctly

Step 3, we sum up the results.

EVALUATION AND KNN
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Data



Often we will put the final results in a table that looks like this:

classified as a basketball 
player

classified as not a 
basketball player

really a basketball player

really not a basketball player

372 128

220 280

So of the 500 basketball players 372 of them were classified correctly. One thing we could do 
is add things up and say that of the 1,000 people we classified 652 (372 + 280) of them 
correctly. So our accuracy is 65.2%. The measures we obtain using ten-fold cross-validation 
are more likely to be truly representative of the classifiers performance compared with two-
fold, or three-fold cross-validation. This is so, because each time we train the classifier we are  
using 90% of our data compared with using only 50% for two-fold cross-validation. 
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Hmmm. I have an idea. If 10-fold 
cross validation is good because we are 
training on 90% of the data, how about 
using n-fold cross validation where n is 
the number of entries in our data set?

For example, if we have 1,000 entries, we 
will train our classifier on 999 of them 
and test on 1, and repeat this process 
1,000 times. Using the largest possible 
amount of our data for training should 
result in a highly accurate classifier.



Leave-One-Out

In the machine learning literature, n-fold cross validation (where n is the number of samples 
in our data set) is called leave-one-out. We already mentioned one benefit of leave-one-out—
at every iteration we are using the largest possible amount of our data for training. The other 
benefit is that it is deterministic. 

What do we mean by ‘deterministic’?

Suppose Lucy spends an intense 80 hour week creating and coding a new classifier.  It is 
Friday and she is exhausted so she asks two of her colleagues (Emily and Li) to evaluate the 
classifier over the weekend. She gives each of them the classifier and the same dataset and 
asks them to use 10-fold cross validation. On Monday she asks for the results ...

EVALUATION AND KNN
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I am happy to report 
that the classifier was 73.69% 
accurate!!

The classifier was only 
71.27% accuate.



Hmm. They did not get the same results. Did Emily or Li make a mistake? Not necessarily. In  
10-fold cross validation we place the data randomly into 10 buckets. Since there is this 
random element, it is likely that Emily and Li did not divide the data into buckets in exactly 
the same way. In fact, it is highly unlikely that they did. So when they train the classifier, they  
are not using exactly the same data and when they test this classifier they are using different 
test sets. So it is quite logical that they would get different results. This result has nothing to 
do with the fact that two different people were performing the evaluation. If Lucy herself ran 
10-fold cross validation twice, she too would get slightly different results. The reason we get 
different results is that there is a random component to placing the data into buckets.  So 10-
fold cross validation is called non-deterministic because when we run the test again we are 
not guaranteed to get the same result. In contrast, the leave-one-out method is deterministic.  
Every time we use leave-one-out on the same classifier and the same data we will get the 
same result. That is a good thing!

The disadvantages of leave-one-out

The main disadvantage of leave-one-out is the computational expense of the method. 
Consider a modest-sized dataset of 1,000 instances and that it takes one minute to train a 
classifier. For 10-fold cross validation we will spend 10 minutes in training. In leave-one-out 
we will spend 16 hours in training.  If our dataset contains a million entries the total time 
spent in training would nearly be two years. Eeeks!
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The other disadvantage of leave-one-out is related to stratification.

Stratification. 

Let us return to an example from the previous chapter—building a classifier that predicts 
what sport a woman plays (basketball, gymnastics, or track). When training the classifier we 
want the training data to be representative and contain data from all three classes. Suppose 
we assign data to the training set in a completely random way. It is possible that no 
basketball players would be included in the training set and because of this, the resulting 
classifier would not be very good at classifying basketball players. Or consider creating a data  
set of 100 athletes. First we go to the Women’s NBA website and write down the info on 33 
basketball players; next we go to Wikipedia and get 33 women who competed in gymnastics, 
at the 2012 Olympics and write that down; finally, we go again to Wikipedia to get 
information on women who competed in track at the Olympics and record data for 34 people.  
So our dataset looks like this:
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comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76
comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76
comment class num num
Asuka Teramoto Gymnastics 54 66
Brittainey Raven Basketball 72 162
Chen Nan Basketball 78 204
Gabby Douglas Gymnastics 49 90
Helalia Johannes Track 65 99
Irina Miketenko Track 63 106
Jennifer Lacy Basketball 75 175
Kara Goucher Track 67 123
Linlin Deng Gymnastics 54 68
Nakia Sanford Basketball 76 200
Nikki Blue Basketball 68 163
Qiushuang Huang Gymnastics 61 95
Rebecca Tunney Gymnastics 58 77
Rene Kalmer Track 70 108
Shanna Crossley Basketball 70 155
Shavonte Zellous Basketball 70 155
Tatyana Petrova Track 63 108
Tiki Gelana Track 65 106
Valeria Straneo Track 66 97
Viktoria Komova Gymnastics 61 76

33 women baskball players

33 women gymnasts

34 women marathoners



Let’s say we are doing 10-fold cross validation. We start at the beginning of the list and put 
every ten people in a different bucket. In this case we have 10 basketball players in both the 
first and second buckets. The third bucket has both basketball players and gymnasts. The 
fourth and fifth buckets solely contain gymnasts and so on. None of our buckets are 
representative of the dataset as a whole and you would be correct in thinking this would skew  
our results.  The preferred method of assigning instances to buckets is to make sure that the 
classes (basketball players, gymnasts, marathoners) are representing in the same proportions 
as they are in the complete dataset. Since one-third  of the complete dataset consists of 
basketball players, one-third of the entries in each bucket should also be basketball players. 
And one-third the entries should be gymnasts and one-third marathoners. This is called 
stratification and this is a good thing. The problem with the leave-one-out evaluation 
method is that necessarily all the test sets are non-stratified since they contain only one 
instance.  In sum, while leave-one-out may be appropriate for very small datasets, 10-fold 
cross validation is by far the most popular choice.

Confusion Matrices
So far, we have been evaluating our classifier  
by computing the percent accuracy. That is, 

sometimes we may want a more detailed 
picture of the performance of our 
classification algorithm and one such 
detailed visualization is a table called the 
confusion matrix. The rows of the confusion 
matrix represent the actual class of the test 
cases, the columns represent what our 
classifier predicted.
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number of test cases correctly classified

         Total number of test cases



The name confusion matrix comes from the observation that it is easy for us to see where our  
algorithm gets confused. Let’s look at an example using our women athlete domain. Suppose 
we have a dataset that consists of attributes for 100 women gymnasts, 100 players in the 
Women’s National Basketball Association, and 100 women marathoners.  We evaluate the 
classifier using 10-fold cross-validation. In 10-fold cross-validation we use each instance of 
our dataset exactly once for testing.  The results of this test might be the following confusion 
matrix:

gymnast basketball player marathoner

gymnast 83 0 17

basketball player 0 92 8

marathoner 9 16 75

Again, the real class of each instance is represented by the rows; the class predicted by our 
classifier is represented by the columns. So, for example, 83 instances of gymnasts were 
classified correctly as gymnasts but 17 were misclassified as marathoners. 92 basketball 
players were classified correctly as basketball players but 8 were misclassified as 
marathoners. 75 marathoners were classified correctly but 9 were misclassified as gymnasts 
and 16 misclassified as basketball players. 

The diagonal of the confusion matrix represents instances that were classified correctly. 

gymnast basketball player marathoner

gymnast 83 0 17

basketball player 0 92 8

marathoner 9 16 85

In this case the accuracy of the algorithm is:

83+ 92 + 75
300

= 250
300

= 83.33%

EVALUATION AND KNN
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It is easy to inspect the matrix to get an idea of what type of errors our classifier is making. It 
this example, it seems our algorithm is pretty good at distinguishing between gymnasts and 
basketball players. Sometimes gymnasts and basketball players get misclassified as 
marathoners and marathoners occasionally get misclassified as gymnasts or basketball 
players.

A programming example

Let us go back to a dataset we used in the last chapter, the Auto Miles Per Gallon data set 
from Carnegie Mellon University. The format of the data looked like:

mpg cylinders c.i. HP weight secs. 0-60 make/model

30 4 68 49 1867 19.5 fiat 128

45 4 90 48 2085 21.7 vw rabbit (diesel)

20 8 307 130 3504 12 chevrolet chevelle malibu

I am trying to predict the miles per gallon of a vehicle based on number of cylinders, 
displacement (cubic inches), horsepower, weight, and acceleration. I put all 392 instances in 
a file named mpgData.txt and wrote the following short Python program that divided the 
data into ten buckets using a stratified method. (Both the data file and Python code are 
available on the website guidetodatamining.com.)
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import random
def buckets(filename, bucketName, separator, classColumn):
    """the original data is in the file named filename
    bucketName is the prefix for all the bucket names
    separator is the character that divides the columns
    (for ex., a tab or comma) and classColumn is the column
    that indicates the class"""

    # put the data in 10 buckets
    numberOfBuckets = 10
    data = {}
    # first read in the data and divide by category
    with open(filename) as f:
        lines = f.readlines()
    for line in lines:
        if separator != '\t':
            line = line.replace(separator, '\t')
        # first get the category
        category = line.split()[classColumn]
        data.setdefault(category, [])
        data[category].append(line)
    # initialize the buckets
    buckets = []
    for i in range(numberOfBuckets):
        buckets.append([])       
    # now for each category put the data into the buckets
    for k in data.keys():
        #randomize order of instances for each class
        random.shuffle(data[k])
        bNum = 0
        # divide into buckets
        for item in data[k]:
            buckets[bNum].append(item)
            bNum = (bNum + 1) % numberOfBuckets
    # write to file
    for bNum in range(numberOfBuckets):
        f = open("%s-%02i" % (bucketName, bNum + 1), 'w')
        for item in buckets[bNum]:
            f.write(item)
        f.close()
           
buckets("mpgData.txt", 'mpgData','\t',0)
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Executing this code will produce ten files labelled mpgData01, mpgData02, etc.

s code it

Can you revise the nearest neighbor code from the last chapter so the 
function test performs 10-fold cross validation on the 10 data files we 
just created (you can download them at guidetodatamining.com)? 

Your program should output a confusion matrix that looks something like:

predicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPGpredicted MPG

ac-
tual 
MPG

10 15 20 25 30 35 40 45

ac-
tual 
MPG

10 3 10 0 0 0 0 0 0
ac-
tual 
MPG

15 3 68 14 1 0 0 0 0
ac-
tual 
MPG 20 0 14 66 9 5 1 1 0

ac-
tual 
MPG

25 0 1 14 35 21 6 1 1

ac-
tual 
MPG

30 0 1 3 17 21 14 5 2

ac-
tual 
MPG

35 0 0 2 8 9 14 4 1

ac-
tual 
MPG

40 0 0 1 0 5 5 0 0

ac-
tual 
MPG

45 0 0 0 2 1 1 0 2

 53.316% accurate
! total of 392 instances
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s code it - one solution

One solution involves only 

Let us look at these in turn.

initializer method  __init__

The signature of the init method looks like:

    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

The filenames of the buckets will be something like mpgData-01, mpgData-02, etc.  In this 
case, bucketPrefix will be “mpgData”. testBucketNumber is the bucket containing the 
test data. If testBucketNumber is 3, the classifier will be trained on buckets 1, 2, 4, 5, 6, 7, 
8, 9, and 10. dataFormat is a string specifying how to interpret the columns in the data. For  
example, 

  "class! num! num! num! num! num! comment"

specifies that the first column represents the class of the instance. The next 5 columns 
represent numerical attributes of the instance and the final column should be interpreted as 
a comment.

The complete, new initializer method is as follows:
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• Changing the initializer method to read in data from 9 buckets.

• Adding a new method to test from data in one bucket

• Adding a new procedure that performs 10-fold cross-validation



import copy

class Classifier:
    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

        """ a classifier will be built from files with the bucketPrefix
        excluding the file with textBucketNumber. dataFormat is a 
        string that describes how to interpret each line of the data 
        files. For example, for the mpg data the format is:
        "class! num! num! num! num! num! comment"
        """ 
        self.medianAndDeviation = []
        
        # reading the data in from the file
        self.format = dataFormat.strip().split('\t')
        self.data = []
        # for each of the buckets numbered 1 through 10:
        for i in range(1, 11):
            # if it is not the bucket we should ignore, read the data
            if i != testBucketNumber:
                filename = "%s-%02i" % (bucketPrefix, i)
                f = open(filename)
                lines = f.readlines()
                f.close()
                for line in lines:
                    fields = line.strip().split('\t')
                    ignore = []
                    vector = []
                    for i in range(len(fields)):
                        if self.format[i] == 'num':
                            vector.append(float(fields[i]))
                        elif self.format[i] == 'comment':
                            ignore.append(fields[i])
                        elif self.format[i] == 'class':
                            classification = fields[i]
                    self.data.append((classification, vector, ignore))
        self.rawData = copy.deepcopy(self.data)
        # get length of instance vector
        self.vlen = len(self.data[0][1])
        # now normalize the data
        for i in range(self.vlen):
            self.normalizeColumn(i)
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testBucket method  

Next, we write a new method that will test the data in one bucket:

    def testBucket(self, bucketPrefix, bucketNumber):
        """Evaluate the classifier with data from the file
        bucketPrefix-bucketNumber"""
        
        filename = "%s-%02i" % (bucketPrefix, bucketNumber)
        f = open(filename)
        lines = f.readlines()
        totals = {}
        f.close()
        for line in lines:
            data = line.strip().split('\t')
            vector = []
            classInColumn = -1
            for i in range(len(self.format)):
                  if self.format[i] == 'num':
                      vector.append(float(data[i]))
                  elif self.format[i] == 'class':
                      classInColumn = i
            theRealClass = data[classInColumn]
            classifiedAs = self.classify(vector)
            totals.setdefault(theRealClass, {})
            totals[theRealClass].setdefault(classifiedAs, 0)
            totals[theRealClass][classifiedAs] += 1
        return totals

This takes as input a bucketPrefix and a bucketNumber. If the prefix is "mpgData " and the 
number is 3, the test data will be read from the file mpgData-03.  testBucket will return a 
dictionary in the following format:

{'35':! {'35': 1, '20': 1, '30': 1}, 
 '40': ! {'30': 1}, 
 '30': ! {'35': 3, '30': 1, '45': 1, '25': 1}, 
 '15': ! {'20': 3, '15': 4, '10': 1}, 
 '10': ! {'15': 1}, 
 '20': ! {'15': 2, '20': 4, '30': 2, '25': 1}, 
 '25': ! {'30': 5, '25': 3}}
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The key of this dictionary represents the true class of the instances. For example, the first line  
represents results for instances whose true classification is 35 mpg.  The value for each key is 
another dictionary that represents how our classifier classified the instances. For example, 
the line

 '15': ! {'20': 3, '15': 4, '10': 1}, 

represents a test where 3 of the instances that were really 15mpg were misclassified as 
20mpg, 4 were classified correctly as 15mpg, and 1 was classified incorrectly as 10mpg.

procedure to perform 10-fold cross-validation.

Finally, we need to write a procedure that will perform 10-fold cross-validation. That is, it 
builds 10 classifiers. Each classifier is trained on 9 of the buckets and tested on data from the 
remaining bucket.

def tenfold(bucketPrefix, dataFormat):
    results = {}
    for i in range(1, 11):
        c = Classifier(bucketPrefix, i, dataFormat)
        t = c.testBucket(bucketPrefix, i)
        for (key, value) in t.items():
            results.setdefault(key, {})
            for (ckey, cvalue) in value.items():
                results[key].setdefault(ckey, 0)
                results[key][ckey] += cvalue
                
    # now print results
    categories = list(results.keys())
    categories.sort()
    print(   "\n       Classified as: ")
    header =    "        "
    subheader = "      +"
    for category in categories:
        header += category + "   "
        subheader += "----+"
    print (header)
    print (subheader)
    total = 0.0
    correct = 0.0
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    for category in categories:
        row = category + "    |"
        for c2 in categories:
            if c2 in results[category]:
                count = results[category][c2]
            else:
                count = 0
            row += " %2i |" % count
            total += count
            if c2 == category:
                correct += count
        print(row)
    print(subheader)
    print("\n%5.3f percent correct" %((correct * 100) / total))
    print("total of %i instances" % total)

tenfold("mpgData", "class! num! num! num! num! num! comment")

Running the program yields the following results:

       Classified as: 
        10   15   20   25   30   35   40   45   
      +----+----+----+----+----+----+----+----+
10    |  5 |  8 |  0 |  0 |  0 |  0 |  0 |  0 |
15    |  8 | 63 | 14 |  1 |  0 |  0 |  0 |  0 |
20    |  0 | 14 | 67 |  8 |  5 |  1 |  1 |  0 |
25    |  0 |  1 | 13 | 35 | 22 |  6 |  1 |  1 |
30    |  0 |  1 |  3 | 17 | 21 | 14 |  5 |  2 |
35    |  0 |  0 |  2 |  7 | 10 | 13 |  5 |  1 |
40    |  0 |  0 |  1 |  0 |  5 |  5 |  0 |  0 |
45    |  0 |  0 |  0 |  2 |  1 |  1 |  0 |  2 |
      +----+----+----+----+----+----+----+----+

52.551 percent correct
total of 392 instances
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Kappa Statistic!
At the start of this chapter we mentioned some of the questions we might be interested in 
answering about a classifier including How good is this classifier. We also have been refining  
our evaluation methods and looked at 10-fold cross-validation and confusion matrices. In the  
example on the previous pages we determined that our classifier for predicted miles per 
gallon of selected car models was 53.316% accurate. But does 53.316% mean our classifier is 
good or not so good? To answer that question we are going to look at one more statistics, the 
Kappa Statistic.
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mean the classifier is a 
good one?



The Kappa Statistic compares the performance of a classifier to that of a classifier that makes 
predictions based solely on chance. To show you how this works I will start with a simpler 
example than the mpg one and again return to the women athlete domain. Here are the 
results of a classifier in that domain:

gymnast basketball 
player

marathoner TOTALS

gymnast 35 5 20 60

basketball player 0 88 12 100

marathoner 5 7 28 40

TOTALS 40 100 60 200

I also show the totals for the rows and columns. To determine the accuracy we sum the 
numbers on the diagonal (35 + 88 + 28 = 151) and divide by the total number of instances 
(200) to get 151 / 200 = .755

Now I am going to generate another confusion matrix that will represent the results of a 
random classifier (a classifier that makes random predictions).  First, we are going to make a 
copy of the above table only containing the totals:

gymnast basketball 
player

marathoner TOTALS

gymnast    60

basketball player    100

marathoner    40

TOTALS 40 100 60 200

Looking at the bottom row, we see that 50% of the time (100 instances out of 200) our 
classifier classifies an instance as “Basketball Player”,  20% of the time (40 instances out of 
200) it classifies an instance as “gymnast” and 30% as “marathoner.”
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We are going to use these percentages to fill in the rest of 
the table. There were 60 total real gymnasts. Our 
random classifier will classify 20% of those as gymnasts. 
20% of 60 is 12 so we put a 12 in the table. It will classify 
50% as basketball players (or 30 of them) and 30% as 
marathoners.

gymnast basketball 
player

marathoner TOTALS

gymnast 12 30 18 60

basketball player    100

marathoner    40

TOTALS 40 100 60 200

And we will continue in this way. There are 100 real basketball players. The random classifier  
will classify 20% of them (or 20) as gymnasts, 50% as basketball players and 30% as 
marathoners. And so on:

gymnast basketball 
player

marathoner TOTALS

gymnast 12 30 18 60

basketball player 20 50 30 100

marathoner 8 20 12 40

TOTALS 40 100 60 200

To determine the accuracy of the random method we sum the numbers on the diagonal and 
divide by the total number of instances:

P(r) = 12 +50 +12
200

= 74
200

= .37
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gymnast: 20%

basketball player: 50%

marathoner: 30%



The Kappa Statistic will tell us how much better the real classifier is compared to this random  
one.  The formula is

κ = P(c)− P(r)
1− P(r)

where P(c) is the accuracy of the real classifier and P(r) is the accuracy of the random one. In 
this case the accuracy of the real classifier was .755 and that of the random one was .37 so

κ = .755 − .37
1− .37

= .385
.63

= .61

How do we interpret that .61? Does that mean our classifier is poor, good, or great? Here is a 
chart that will help us interpret that number:
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A commonly cited* scale on how to interpret Kappa

< 0:    less than chance performance

0.01-0.20  slightly good

0.21-0.40  fair performance

0.41-0.60  moderate performance

0.61-0.80  substantially good performance

0.81-1.00  near perfect performance
* Landis, JR, Koch, GG. 1977. The measurement of observer agreement for categorical data. Biometrics 33:159-74



accuracy = 0.697

s sharpen your pencil

Suppose we developed a somewhat silly classifier that predicts the 
major of current university students based on how well they liked 10 
movies. We have a data set of 600 students consisting of computer 
science (cs) majors, education majors (ed), English majors (eng) and 
psychology majors (psych).  The confusion matrix is shown below. Can 
you compute the Kappa Statistic and interpret what that statistic 
means? 

predicted majorpredicted majorpredicted majorpredicted major

cs ed eng psych Total

cs 50 8 15 7

ed 0 75 12 33

eng 5 12 123 30

psych 5 25 30 170
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s solution
How good is our classifier? Can you compute the Kappa Statistic and 
interpret what that statistic means? 

First, we sum all the columns:

cs ed eng psych TOTAL

SUM 60 120 180 240 600

% 10% 20% 30% 40% 100%

Next, we construct the confusion matrix for the random classifier

predicted majorpredicted majorpredicted majorpredicted major

cs ed eng psych Total

cs 8 16 24 32 80

ed 12 24 36 48 120

eng 17 34 51 68 170

psych 23 46 69 92 230

Total 60 120 180 240 600

The accuracy of this random classifier is:
(8 + 24 + 51 + 92) / 600  = (175 / 600) = 0.292
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s solution continued

So the accuracy of our classifier P(c) is 0.697 
and that of the random classifier P(r) is 292 

The Kappa Statistic is 

                    κ = P(c)− P(r)
1− P(r)

         κ = 0.697 − 0.292
1− 0.292

= 0.405
0.708

= 0.572

This suggests our algorithm performs moderately well.
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Improvements to the Nearest 
Neighbor Algorithm!

One trivial example of a classifier is the Rote Classifier, which just memorizes the entire 
training set and only classifies an instance if that instance exactly matches one in the training  
set. If we only evaluated classifiers on instances in the training data, the Rote Classifier 
would always be 100%  accurate. In real life, the rote classifier is not a good choice because 
there will be instances we want to classify that are not in the training set. You can view the 
nearest neighbor algorithm we have been working with as an extension of the rote classifier. 
Instead of requiring exact matches we are looking at instances that are close matches. Pang-
Ning Tan, Michael Steinbach, and Vipin Kumar in their  data 
mining textbook 1  call this the If it 
walks like a duck, quacks like a duck, 
and looks like a duck, then it's 
probably a duck approach. 

One problem with the nearest neighbor algorithm occurs when we have outliers. Let me 
explain what I mean by that. And let us return, yet again, to the women athlete domain; this 
time only looking at gymnasts and marathoners. Suppose we have a particularly short and 
lightweight marathoner.  In diagram form, this data might be represented as on the next 
page, where m indicates ‘marathoner’ and g, ‘gymnast.

EVALUATION AND KNN
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We can see that short lightweight marathoner as the sole m in the group of g’s. Suppose x is 
an instance we would like to classify. Its nearest neighbor is that outlier m, so it would get 
classified as a marathoner. If we just eyeballed the diagram we would say that x is most likely 
a gymnast since it appears to be in the group of gymnasts. 

kNN
One way to improve our current nearest neighbor approach is instead of looking at one 
nearest neighbor we look at a number of nearest neighbors—k nearest neighbors or kNN. 
Each neighbor will get a vote and the algorithm will predict that the instance will belong to 
the class with the highest number of votes. For example, suppose we are using three nearest 
neighbors (k = 3).  In that case we have 2 votes for gymnast and one for marathoner, so we 
would predict x is a gymnast:
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So when we are trying to predict a discrete class (marathoners, gymnasts, or basketball 
players, for example) we can use this voting method.  The class with the most votes will be 
the one assigned to the instance. If there is a tie the predicted class will be selected randomly 
from the classes that are tied. When we are trying to predict a numeric value like how 
many stars a person will give the band Funky Meters we can apportion influence from the 
nearest neighbors to compute a distance-weighted value. Let me parse that out a bit more. 
Suppose we are trying to predict how well Ben will like Funky Meters and Ben’s three closest 
neighbors are Sally, Tara, and Jade. Here are their distances from Ben and their ratings for 
Funky Meters. 
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User Distance Rating

Sally 5 4

Tara 10 5

Jade 15 5

So Sally was closest to Ben and she gave Funky Meters a 4. Because I want the rating of the 
closest person to be weighed more heavily in the final value than the other neighbors, the 
first step we will do is to convert the distance measure to make it so that the larger the 
number the closer that person is. We can do this by computing the inverse of the distance 
(that is, 1 over the distance). So the inverse of Sally’s distance of 5 is 

           
1
5
= 0.2

User Inverse Distance Rating

Sally 0.2 4

Tara 0.1 5

Jade 0.067 5

Now I am going to divide each of those inverse distances by the sum of all the inverse 
distances. The sum of the inverse distances is 0.2 + 0.1 + 0.067 = 0.367.

User Influence Rating

Sally 0.545 4

Tara 0.272 5

Jade 0.183 5

We should notice two things. First, that the sum of the influence values totals 1. The second 
thing to notice is that with the original distance numbers Sally was twice as close to Ben as 
Tara was, and that is preserved in the final numbers were Sally has twice the influence as 
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Tara does. Finally we are going to multiple each person’s influence and rating and sum the 
results:

predicted Score for Ben 

                   

= 0.545 × 4 + 0.272 × 5 + 0.183× 5

= 2.18 +1.36 + 0.915 = 4.455

s sharpen your pencil

I am wondering how well Sofia will like the jazz pianist Hiromi. What is 
the predicted value given the following data using the k nearest 
neighbor algorithm with k = 3.?
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person distance from Sofia rating for HiromiGabriela 4 3
Ethan

8 3
Jayden 10 5



s sharpen your pencil  - solution

the first thing to do is to compute the inverse  ( 1 over the distance) 
of each distance:

Person Inverse Distance Rating

Gabriela 1/4 = 0.25 3

Ethan 1/8 = 0.125 3

Jayden 1/10 = 0.1 5

The sum of the inverse distances is 0.475. Next I am going to compute 
the influence of each person by dividing the inverse distance by the sum 
of each distance

Person Influence Rating

Gabriela 0.526 3

Ethan 0.263 3

Jayden 0.211 5

Finally, I multiply the influence by the rating and sum the results:

= (0.526 × 3)+ (0.263× 3)+(0.211× 5)

= 1.578 + 0.789 +1.055 = 3.422
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A new dataset and a challenge!
It is time to look at a new dataset, the Pima Indians Diabetes Data Set developed by the 
United States National Institute of Diabetes and Digestive and Kidney Diseases.

Astonishingly, over 30% of Pima people develop diabetes.  In contrast, the diabetes rate in 
the United States is 8.3% and in China it is 4.2%.

Each instance in the dataset represents information about a Pima woman over the age of 21 
and belonged to one of two classes: a person who developed diabetes within five years, or a 
person that did not. There are eight attributes:
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5-33



Here is an example of the data (the last column represents the class—0=no diabetes;
1=diabetes):

2  99  52  15  94  24.6  0.637  21  0

3  83  58  31  18  34.3  0.336  25  0

5  139  80  35  160  31.6  0.361  25  1

3  170  64  37  225  34.5  0.356  30  1

So, for example, the first woman has had 2 children, has 
a plasma glucose concentration of 99, a diastolic blood 
pressure of 52 and so on.
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attributes:

1. Number of times pregnant 
2. Plasma glucose concentration 
3. Diastolic blood pressure (mm Hg) 
4. Triceps skin fold thickness (mm) 
5. 2-Hour serum insulin (mu U/ml) 
6. Body mass index (weight in kg/(height in m)^2) 
7. Diabetes pedigree function 
8. Age (years)



 

s code it - part 1

There are two files on our website. pimaSmall.zip is a zip file containing 100 
instances of the data divided into 10 files (buckets). pima.zip is a zip file 
containing 393 instances. When I used the pimaSmall data with the nearest 
neighbor classifier we built in the previous chapter using 10-fold cross-
validation I got these results:

       Classified as: 
        0   1   
      +----+----+
0     | 45 | 14 |
1     | 27 | 14 |
      +----+----+

59.000 percent correct
total of 100 instances

Here is your task:

Download the classifier code from our website and implement the kNN 
algorithm. Let us change the initializer method of the class to add another 
argument, k:

def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):

The method signature should look like    def knn(self, itemVector):
It should make use of self.k (remember to set that value in the init method) 
and return the class (in this Pima Cancer dataset case ‘0’ or ‘1’). You should 
also modify the procedure tenfold to pass k to the initializer.
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Hint: The python function heapq.nsmallest(n, list) will return a list with the n smallest items.



s code it - answer

My modification to _init__ was simply:

def __init__(self, bucketPrefix, testBucketNumber, dataFormat, k):
        self.k = k
        ...

 

My knn method was
    
def knn(self, itemVector):
    """returns the predicted class of itemVector using k
    Nearest Neighbors"""
    # changed from min to heapq.nsmallest to get the
    # k closest neighbors
    neighbors = heapq.nsmallest(self.k,
                           [(self.manhattan(itemVector, item[1]), item)
                           for item in self.data])
    # each neighbor gets a vote
    results = {}
    for neighbor in neighbors: 
        theClass = neighbor[1][0]
        results.setdefault(theClass, 0)
        results[theClass] += 1
    resultList = sorted([(i[1], i[0]) for i in results.items()],  
                        reverse=True)
    #get all the classes that have the maximum votes
    maxVotes = resultList[0][0]
    possibleAnswers = [i[1] for i in resultList if i[0] == maxVotes]
    # randomly select one of the classes that received the max votes
    answer = random.choice(possibleAnswers)
    return( answer)
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My slight modification to tenfold was:

def tenfold(bucketPrefix, dataFormat, k):
    results = {}
    for i in range(1, 11):
        c = Classifier(bucketPrefix, i, dataFormat, k)

        ...

   

 

s code it - part 2

     Which makes the most difference? Having more data 
(comparing the results from pimaSmall and pima) or having 
a better algorithm (comparing k=1 to k=3)?
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You can download this code at guidetodatamining.com. Remember, this is just one way to implement this method, and it is not necessarily the best way.



s code it - results!

Here are my accuracy results (k=1 is the nearest neighbor algorithm 
from the last chapter):

 

So it seems that roughly tripling the amount of data increases the 
accuracy much more than improving the algorithm does.
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pimaSmall pima

k=1 59.00% 71.247%

k=3 61.00% 72.519%



s sharpen your pencil

Hmm. 72.519% seems like pretty good accuracy but is it? Compute the 
Kappa Statistic to find out:

EVALUATION AND KNN
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no diabetes diabetes

no diabetes 219 44

diabetes 64 66

Performance:

☐     slightly good
☐      fair
☐      moderate
☐      substantially good
☐      near perfect



s sharpen your pencil — answer

random (r) classifier:

κ = P(c)− P(r)
1− P(r)

= .72519 − .5745
1− .5745

= .15069
.4255

= .35415

Only fair performance
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no diabetes diabetes TOTAL

no diabetes 219 44 263

diabetes 64 66 130

TOTAL 283 110 393

ratio 0.7201 0.2799

no diabetes diabetes

no diabetes 189.39 73.61

diabetes 93.61 36.39

p(r)= 189.39 + 36.39
393

= .5745

accuracy



More data, better algorithms & a broken bus
Several years ago I was at a 
conference in Mexico City. This 
conference was a bit unusual in that 
it alternated between a day of 
presentations and a day of touring 
(the Monarch Butterflies, Inca 
ruins, etc). The days of touring 
involved riding long distances on a 
bus and the bus had a tendency to 
break down. As a result, a bunch of 
us PhD types spend a good deal of 
time standing at the side of road 
talking to one another as the bus 
was being attended to. These roadside exchanges were the 
highpoint of the conference for me. One of the people I talked to was a person named Eric 
Brill. Eric Brill is famous for developing what is called the Brill tagger, which does part-of-
speech tagging. Similar to what we have been doing in the last few chapters, the Brill tagger 
classifies data—in this case, it classifies words by their part of speech (noun, verb, etc.). The 
algorithm Brill came up with was significantly better than its predecessors (and as a result 
Brill became famous in natural language processing circles). At the side of that Mexican road, 
I got to talking with Eric Brill about improving the performance of algorithms. His view is 
that you get more of an improvement by getting more data for the training set, than you 
would by improving the algorithm. In fact, he felt that if he kept the original part-of-speech 
tagging algorithm and just increased the size of the training data, the improvement would 
exceed that of his famous algorithm. Although, he said, you cannot get a PhD for just 
collecting more data, but you can for developing an algorithm with marginally improved 
performance!

Here's another example. In various machine translation competitions, Google always places 
at the top. Granted that Google has a large number of very bright people developing great 
algorithms, much of Google's dominance is due to its enormous training sets it acquired from  
web.

����  ➯   Més dades   ➯    More data

EVALUATION AND KNN
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This isn't to say that you shouldn't pick the best algorithm for the job. As we have already 
seen picking a good algorithm makes a significant difference. However, if you are trying to 
solve a practical problem (rather than publish a research paper) it might not be worth your 
while to spend a lot of time researching and tweaking algorithms. You will perhaps get more 
bang for your buck—or a better return on your time—if you concentrate on getting more data.  

With that nod toward the importance of data, I will continue my path of introducing new 
algorithms. 
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People have used kNN classifiers for 

recommending items at Amazonassessing consumer credit riskclassifying land cover using image analysisrecognizing faces
classifying the gender of people in imagesrecommending web pages
recommending vacation packages



Chapter 6: Probability and Naive Bayes

Naïve Bayes

Let us return yet again to our women athlete example. Suppose I ask you what sport Brittney 
Griner participates in (gymnastics, marathon running, or basketball) and I tell you she is 6 
foot 8 inches and weighs 207 pounds.  I   imagine you would say basketball and if I ask you 
how confident you feel about your decision I imagine you would say something along the 
lines of “pretty darn confident.”

Now I ask you what sport Heather Zurich  (pictured 
on the right) plays. She is 6 foot 1 and weighs 176 
pounds.  Here I am less certain how you will answer. 
You might say ‘basketball’ and I ask you how 
confident you are about your prediction. You 
probably are less confident than you were about your  
prediction for Brittney Griner. She could be a tall 
marathon runner.

Finally, I ask you about what sport Yumiko Hara 
participates in; she is 5 foot 4 inches tall and weighs 
95 pounds.  Let's say you say ‘gymnastics’ and I ask 
how confident you feel about your decision.  You will 
probably say something along the lines of “not too 
confident.” A number of marathon runner have 
similar heights and weights.

With the nearest neighbor algorithms, it is difficult to 
quantify confidence about a classification. With 
classification methods based on probability—

 



Bayesian methods—we can not only make a classification but we can make probabilistic 
classifications—this athlete is 80% likely to be a basketball player, this patient has a 40% 
chance of  getting diabetes in the next five years, the probability of rain in Las Cruces in the 
next 24 hours is 10%.

Nearest Neighbor approaches are called 
lazy learners. They are called this 
because when we give them a set of 
training data, they just basically save—
or remember—the set. Each time it 
classifies an instance, it goes through 
the entire training dataset. If we have 
a 100,000 music tracks in our 
training data, it goes through the 
entire 100,000 tracks each time it 
classifies an instance. 

Bayesian methods are called eager 
learners. When given a training set 
eager learners immediately analyze the 
data and build a model. When it wants 
to classify an instance it uses this 
internal model. Eager learners tend to 
classify instances faster than lazy 
learners. 

The ability to make probabilistic classifications, and the fact that they are eager learners 
are two advantages of Bayesian methods. 
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Probability
I am assuming you have some basic knowledge of probability. I flip a coin; what is the 
probably of it beings a 'heads'?  I roll a 6 sided fair die, what is the probability that I roll a '1'?   
that sort of thing. I tell you I picked a random 19 year old and have you tell me the probability  
of that person being female and without doing any research you say 50%.  These are 
examples of what is called prior probability and is denoted P(h)—the probability of 
hypothesis h. 

Suppose I give you some additional information about that 19 yr. old—the person is a student  
at the  Frank Lloyd Wright School of Architecture in Arizona. You do a quick Google search, 
see that the student body is 86% female and revise your estimate of the likelihood of the 
person being female to 86%. 

This we denote as P(h|D) —the probability of the hypothesis h given some data D. For 
example:

So for a coin:

P(heads) = 0.5

For a six sided dice, the probability of rolling a ‘1’:

P(1) = 1/6

If I have an equal number of 19 yr. old male and 
females → 

P(female) = .5

P(female | attends Frank Lloyd Wright School) = 0.86

which we could read as “The probability the person is female given 
that person attends the Frank Lloyd Wright School is 0.86

PROBABILITY AND NAÏVE BAYES
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The formula is

          P(A | B) =
P(A∩ B)
P(B)

An example. 

In the following table I list some people and the types of laptops and phones they have:
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name laptop phone
Kate PC Android

Tom PC Android

Harry PC Android

Annika Mac iPhone

Naomi Mac Android

Joe Mac iPhone

Chakotay Mac iPhone

Neelix Mac Android

Kes PC iPhone

B’Elanna Mac iPhone

What is the probability that a randomly 
selected person uses an iPhone?

There are 5 iPhone users out of 10 total users so

P(iPhone) = 5
10

= 0.5

What is the probability that a randomly selected 
person uses an iPhone given that person uses a 
Mac laptop?

P(iPhone |mac) = P(mac∩ iPhone)
P(mac)

First, there are 4 people who use both a Mac and  
an iPhone:

P(mac∩ iPhone) = 4
10

= 0.4

and the probability of a random person using a 
mac is

P(mac) = 6
10

= 0.6



So the probability of that some person uses an iPhone given that person uses a Mac is

P(iPhone |mac) = 0.4
0.6

= 0.667

That is the formal definition of posterior probability. Sometimes when we implement this we 
just use raw counts:

P(iPhone|mac) = 

P(iPhone |mac)= 4
6
= 0.667

s sharpen your pencil

What’s the probability of a person owning 
a mac given that they own an iPhone   

i.e., P(mac|iPhone)?

PROBABILITY AND NAÏVE BAYES

6-5

number of people who use a mac and an iPhone

number of people who use a mac

tip

If you feel you need practice with basic probabilities please see the links to 
tutorials at guidetodatamining.com. 



 

Some terms:
P(h), the probability that some hypothesis h is true, is called the prior probability of h.  
Before we have any evidence, the probability of a person owning a Mac is 0.6 (the evidence 
might be knowing that the person also owns an iPhone). 

P(h|d) is called the posterior probability of h. After we observe some data d what is the 
probability of h? For example, after we observe that a person owns an iPhone, what is the 
probability of that same person owning a Mac? It is also called conditional probability. 

In our quest to build a Bayesian Classifier we will need two additional probabilities, P(D) and 
P(D|h). To explain these consider the following example.

s sharpen your pencil — solution

What’s the probability of a person owning 
a mac given that they own an iphone   

i.e., P(mac|iPhone)?

P(mac | iPhone) = P(iPhone∩mac)
P(iPhone)

= 0.4
0.5

= 0.8
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Microsoft Shopping Cart
Did you know that Microsoft makes smart grocery store shopping carts?  Yep, they do. Well, 
actually, Microsoft has contracted with a company called Chaotic Moon to develop them. 
Chaotic Moon’s slogan is We are smarter than you. We are more creative than you. You can 
decide whether they are arrogant, cheeky, or something else. Anyway, the cart combines a 
shopping cart with a Windows 8 tablet, a Kinect, a Bluetooth speaker (so the cart can talk to 
you), and a mobile robotics platform (so the cart can follow you around the store). 

You come in with your grocery store loyalty card. The cart recognizes you. It has recorded all 
previous purchases (as well as the purchases of everyone else in the store). 

Suppose the cart software wants to 
determine whether to show you a 
targeted ad for Japanese Sensha 
Green Tea. It only wants to show 
that ad if you are likely to purchase 
the tea.

The cart system has accumulated 
the small dataset shown on the next 
page from other shoppers

P(D) is the probability that some training data will be observed. For example, looking on the 
next page we see that the probability that the zip code will be 88005 is 5/10 or 0.5.

         P(88005) = 0.5

P(D|h) is the probability that some data value holds given the hypothesis. For example, the 
probability of the zip code being 88005 given that the person bough Sencha Green Tea or 
P(88005|Sencha Tea).

PROBABILITY AND NAÏVE BAYES
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Zipcodes are a set 
of postal codes 
used in the U.S.

In this case we are looking at all the instances where the person bought Sensha Tea. There 
are 5 such instances. Of those, 3 are with the 88005 zip code.

P(88005 | SenchaTea) = 3
5
= 0.6

s sharpen your pencil

What’s the probability of the zip code being 88005 given that the person did 
not buy Sencha tea? 
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Customer 
ID

Zipcode bought organic 
produce?

bought Sencha 
green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes



s sharpen your pencil — solution

What’s the probability of the zip code being 88005 given that the person did 
not buy Sencha tea?

There are 5 occurrences of a person not buying Sencha tea. Of those, 2 lived in 
the 88005 zip code.  So

P(88005 |¬SenchaTea) = 2
5
= 0.4

s sharpen your pencil

This is key to understanding the rest of the chapter so let us practice just a bit 
more.

1. What is the probability of a person being in the 88001 zipcode (without 
knowing anything else)?

2. What is the probability of a person being in the 88001 zipcode knowing that 
they bought Sencha tea?

3. What is the probability of a person being in the 88001 zipcode knowing that 
they did not buy Sencha tea?

PROBABILITY AND NAÏVE BAYES
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That ¬  symbol means ‘not’.



s sharpen your pencil — solution

This is key to understanding the rest of the chapter so let us practice just a bit 
more.

1. What is the probability of a person being in the 88001 zipcode (without 
knowing anything else)?

There are 10 total entries in our database and only 3 of them are from 
88001 so P(88001) is 0.3

2. What is the probability of a person being in the 88001 zipcode knowing that 
they bought Sencha tea? 
There are 5 instances of buying Sencha tea and only 1 of them is from the 
88001 zipcode so

P(88001| SenchaTea) = 1
5
= 0.2

3. What is the probability of a person being in the 88001 zipcode knowing that 
they did not buy Sencha tea?
There are 5 instances of not buying Sencha tea and 2 of them are from the 
88001 zipcode:

P(88001|¬SenchaTea) = 2
5
= 0.4
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Bayes Theorem
Bayes Theorem describes the relationship between P(h), P(h|D), P(D), and P(D|h):

This theorem is the cornerstone of all Bayesian methods.  Usually in data mining we use this 
theorem to decide among alternative hypotheses.  Given the evidence, is the person a 
gymnast, marathoner, or basketball player. Given the evidence, will this person buy Sencha 
tea, or not. To decide among alternatives we compute the probability for each hypothesis. For  
example,

PROBABILITY AND NAÏVE BAYES
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P(h |D) = P(D | h)P(h)
P(D)

We want to display an ad for Sencha Tea on our smart shopping cart display only 
if we think that person is likely to buy the tea. We know that person lives in the 
88005 zipcode. 

There are two competing hypotheses: 

     The person will buy Sencha tea. 
     We compute P(buySenchaTea|88005) 

     The person will not buy Sencha tea. 
     We compute P(¬buySenchaTea|88005) 

We pick the hypothesis with the highest probability!

So if P(buySenchaTea|88005)  = 0.6 and

P(¬buySenchaTea|88005) = 0.4

So it is more likely that the person will buy the tea so we will display the ad.



Suppose we work for an electronics store and we have three sales flyers in email form. One 
flyer features a laptop, another features a desktop and the final flyer a tablet. Based on what 
we know about each customer we will email that customer the flyer that will most likely 
generate a sale.  For example, I may know that a customer lives in the 88005 zipcode, that 
she has a college age daughter living at home, and that she goes to yoga class. Should I send 
her the flyer with the laptop, desktop, or tablet?  

My hypotheses are which flyer is the best: laptop, desktop, tablet. So I compute:

And pick the hypothesis with the highest probability. 

More abstractly, in a classification task we have a number of possible hypotheses: 
h1, h2, ...hn.  These hypotheses are the different categories of our task (for example, basketball  
players, marathoners, gymnasts, or ‘will get diabetes’, ‘will not get diabetes’). 
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Let D represent all that I know about that 
customer:
• lives in 88005 zipcode
• has college age daughter
• goes to yoga class

P(laptop |D) = P(D | laptop)P(laptop)
P(D)

      

P(desktop |D) = P(D | desktop)P(desktop)
P(D)

P(tablet |D) = P(D | tablet)P(tablet)
P(D)



            

Once we compute all these probabilities, we will pick the hypothesis with the highest 
probability. This is called the maximum a posteriori hypothesis, or hMAP.  

P(hn |D) =
P(D | hn )P(hn )

P(D)

PROBABILITY AND NAÏVE BAYES
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P(h1 |D) =
P(D | h1)P(h1)

P(D)
P(h2 |D) =

P(D | h2 )P(h2 )
P(D),

...

Ok, I compute the probability 
of each possible hypothesis and 
select the hypothesis with the 
highest probability. That 
hypothesis is called the maximum 
a posteriori hypothesis!

That’s right! You got it!



We can translate that English description of calculating the maximum a posteriori hypothesis 
into the following formula:

hMAP = argmaxh∈H P(h |D)

H is the set of all the hypotheses. So h∈H means “for every hypothesis in the set of 
hypotheses.” The full formula means something like “for every hypothesis in the set of 
hypotheses compute P (h|D) and pick the hypothesis with the largest probability.” Using 
Bayes Theorem we can convert that formula to:

hMAP = argmaxh∈H
P(D | h)P(h)

P(D)

So for every hypothesis we are going to compute:

P(D | h)P(h)
P(D)

You might notice that for all these calculations, the denominators are identical—P(D). Thus, 
they are independent of the hypotheses. If a specific hypothesis has the max probability with 
the formula used above, it will still be the largest if we did not divide all the hypotheses by 
P(D).  If our goal is to find the most likely hypothesis, we can simplify our calculations:

hMAP = argmaxh∈H P(D | h)P(h)

To see how this works, we will use an example from Tom M. Mitchell’s book, Machine 
Learning. Tom Mitchell is chair of the Machine Learning Department at Carnegie Mellon 
University. He is a great researcher and an extremely nice guy. On to the example from the 
book. Consider a medical domain where we want to determine whether a patient has a 
particular kind of cancer or not. We know that only 0.8% of the people in the U.S. have this 
form of cancer. There is a simple blood test we can do that will help us determine whether 
someone has it. The test is a binary one—it comes back either POS or NEG. When the disease is 
present the test returns a correct POS result 98% of the time; it returns a correct NEG result 
97% of the time in cases when the disease is not present.
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s sharpen your pencil
Let’s translate what I wrote above into probability notation. Please match 
up the English statements below with their associated notations and write in the 
probabilities. If there is no English statement matching a probability, please 
write one.

PROBABILITY AND NAÏVE BAYES
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Our hypotheses:

• The patient has the particular cancer
• The patient does not have that particular 

cancer.

We know that only 0.8% of the people 
in the U.S. have this form of cancer.

When the disease is present the test 
returns a correct POS result 98% of the 
time;

it returns a correct NEG result 97% of 
the time in cases when the disease is 
not present

P(POS|cancer) = _______

P(POS|¬cancer) = _______

P(cancer)  = _______

P(¬cancer) = _______

P(NEG|cancer) = _______

P(NEG|¬cancer) = _______



s sharpen your pencil — solution

6-16

We know that only 0.8% of the people 
in the U.S. have this form of cancer.

99.2% of people don’t have this 
cancer

When the disease is present the test 
returns a correct POS result 98% of 
the time;

When the disease is present the test 
returns a incorrect NEG result 2% of 

it returns a correct NEG result 97% 
of the time in cases when the disease 
is not present

it returns an incorrect POS result 3% of 
the time in cases when the disease is not 
present

P(POS|cancer) = 0.98

P(POS|¬cancer) = 0.03 

P(cancer)  = 0.008

P(¬cancer) = 0.992

P(NEG|cancer) = 0.02 

P(NEG|¬cancer) = 0.97 



s sharpen your pencil — solution
 
Suppose Ann, comes into the doctor's office

A blood test for cancer is given and the test 
result is POS. 

This is not looking good for Ann. After all, the test 
is 98% accurate.

Using Bayes Theorem determine whether it is 
more likely that Ann has cancer or that she does 
not. 

PROBABILITY AND NAÏVE BAYES
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P(cancer)  = 0.008

P(¬cancer) = 0.992

P(POS|cancer) = 0.98

P(POS|¬cancer) = 0.03 

P(NEG|cancer) = 0.02 

P(NEG|¬cancer) = 0.97 



s sharpen your pencil — solution
 
Suppose Ann, comes into the doctor's office
A blood test for the cancer is given and the test result is POS. 

This is not looking good for Ann. After all, the test is 98% accurate.

Using Bayes Theorem determine whether it is more likely that Ann has cancer or that 
she does not.

We are finding the maximum a posteriori probability:

P(POS | cancer)P(cancer) = .98(.008) = .0078

P(POS | ¬ cancer) P(¬ cancer) = .03(.992) = .0298

We select hMAP  and classify the patient as not having cancer. 

If we want to know the exact probability we can normalize these values by having them 
sum to 1:

P(cancer | POS) = 0.0078
0.0078 + 0.0298

= 0.21

Ann has a 21% chance of having cancer.
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Here is why the results seem so 
counterintuitive. Most people see the statistic 
that 98% of the people who have this 
particular cancer will have a positive test 
result and also conclude that 98% of the 
people who have a positive test result have 
this particular cancer. This fails to take into 
account that this cancer affects only 0.8% of 
the population. Let’s say we give the test to 
everyone in a city of 1 million people.  That 
means that 8,000 people have cancer and 
992,000 do not. First, let’s consider giving the test to the 8,000 people with cancer.  We 
know that 98% of the time when we give the test to people with cancer the test correctly 
returns a positive result. So 7,840 people have a correct positive result and 160 of those 
people with cancer have an incorrect negative result. Now let’s turn to the 992,000 people 
without cancer. When we give the test to them, 97% of the time we get a correct negative 
result so (992,000 * 0.97) or 962,240 of them have a correct negative result and 30,000 have 
an incorrect positive result. I have summarized these results on the following page.

PROBABILITY AND NAÏVE BAYES

6-19

You may think “That just doesn’t make 
sense. After all, the test is 98% accurate, 
but yet you re telling me Ann is most likely 
not to have cancer. “

You are in good company.  85% of medical 
doctors get the answer wrong as well.

I just didn’t make that 85% number up. 
See, among others,

Casscells, W., Schoenberger, A., and Grayboys, T. 

(1978):  "Interpretation by physicians of clinical 

laboratory results." N Engl J Med. 299:999-1001.

Gigerenzer, Gerd and Hoffrage, Ulrich (1995):  "How to improve Bayesian reasoning without instruction: Frequency formats."  Psychological Review. 102: 684-704.

Eddy, David M. (1982):  "Probabilistic reasoning 
in clinical medicine:  Problems and 
opportunities."  In D. Kahneman, P. Slovic, and A. 
Tversky, eds, Judgement under uncertainty: 
Heuristics and biases. Cambridge University 
Press, Cambridge, UK.



positive test result negative test result

people with cancer 7,840 160

people without cancer 30,000 962,240

Now, consider Ann getting a positive test result and the data in the ‘positive test result’ 
column. 30,000 of the people with a positive test result had no cancer while only 7,840 of 
them had cancer. So it seems probable that Ann does not have cancer.

Why do we need Bayes Theorem?
Yet again, Bayes Theorem is 

P(h |D) = P(D | h)P(h)
P(D)

Let us return to the shopping cart example 
presented earlier. In that example, we 
obtained the information on the right from 
customers.
Say we know a customer lives in the 
88005 zipcode and our two competing 
hypotheses are that they will buy Sencha 
tea or they will not. So:

P(h1|D) = P(buySenchaTea|88005)

and

P(h2|D) = P(¬ buySenchaTea|88005)

Customer 
ID

Zipcode bought 
organic 
produce?

bought 
Sencha 

green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes
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Still don’t get it?
Don’t worry. Many people don’t. 
After more practice you will gain a better understanding.



In this case you may wonder why we need to compute 

P(88005 | buySenchaTea)P(buySenchaTea)
P(88005)

when we can just as easily compute P(buySenchaTea|88005) directly from the data in the 
table. In this simple case you would be correct but for many real world problems it is very 
difficult to compute P(h|D) directly. 

Consider the previous medical example where we were interested in determining whether a 
person had cancer or not given that a certain test returned a positive result. 

P(cancer | POS) ≈ P(POS | cancer)P(cancer)

P(¬cancer | POS) ≈ P(POS |¬cancer)P(¬cancer)

It is relatively easy to compute the items on the right hand side. We can estimate 
P(POS|cancer) by giving the cancer test to a representative sample of people with cancer and 
P(POS|¬ cancer)  by giving the test to a sample of people without cancer. P(cancer) seems like  
a statistic that would be available on government websites and P(¬ cancer) is simply 

1  - P(cancer)

 However, computing P(cancer|POS) directly would be significantly more challenging. This is 
asking us to determine the probability that when we give the test to a random average person  
in the entire population and the test result is POS then that person has cancer. To do this we 
want a representative sample of the population but since only 0.8% of people have cancer a 
sample size of 1,000 people would only have 8 people with cancer—far too few to feel that 
our counts are representative of the population as a whole.  So we would need an extremely 
large sample size. So Bayes Theorem provides a strategy for computing P(h|D) when it is 
hard to do so directly.

PROBABILITY AND NAÏVE BAYES
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Naïve Bayes
Most of the time we have more evidence than just a single piece of data. In the Sencha tea 
example we had two types of evidence: zip code and whether the person purchased organic 
food. To compute the probability of an hypothesis given all the evidence, we simply multiply 
the individual probabilities. In this example

We would like to know whether a person 
who lives in the 88005 zipcode and 
bought organic produce will likely buy tea:

P(tea|88005 & organic)   and for that we simply multiply the probabilities:

P(tea|88005 & organic) = P(88005 | tea) P(organic | tea) P(tea) = .6(.8)(.5) = .24

P(¬tea|88005 & organic) = P(88005 |¬tea) P(organic |¬tea) P(¬tea) = .4(.25)(.5) = .05

So a person who lives in the trendy 88005 zip code area and buys organic food is more likely 
to buy Sencha Green tea than not. So let's display the Green Tea ad on the shopping cart 
display!

Customer 
ID

Zipcode bought 
organic 
produce?

bought 
Sencha 

green tea?

1 88005 Yes Yes

2 88001 No No

3 88001 Yes Yes

4 88005 No No

5 88003 Yes No

6 88005 No Yes

7 88005 No No

8 88001 No No

9 88005 Yes Yes

10 88003 Yes Yes
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Code:

tea = Person buy Sencha tea

¬ tea = Person does not buy 
Sencha tea

P(88005|tea) = probability that 
a person lives in the 88005 
zipcode given that person bought 
Sencha tea.

etc.



Here's how Stephen Baker describes the smart shopping cart technology:

… here's what shopping with one of these carts might feel like. You grab a cart on 
the way in and swipe your loyalty card. The welcome screen pops up with a 
shopping list. It's based on patterns of your last purchases. Milk, eggs, zucchini, 
whatever. Smart systems might provide you with the quickest route to each item. 
Or perhaps they'll allow you to edit the list, to tell it, for example, never to 
promote cauliflower or salted peanuts again. This is simple stuff. But according to 
Accenture's studies, shoppers forget an average of 11 percent of the items they 
intend to buy. If stores can effectively remind us of what we want, it means fewer 
midnight runs to the convenience store for us and more sales for them.

      Baker. 2008. P49.

PROBABILITY AND NAÏVE BAYES
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The Numerati
I've mentioned this book by Stephen Baker several times. I highly 
encourage you to read this book. The paperback is only $10 and it 
is a good late night read.



i100 i500
Let's say we are trying to help iHealth, a 
company that sells wearable exercise 
monitors that compete with the Nike Fuel 
and the Fitbit Flex. iHealth sells two models 
that increase in functionality: the i100 and 
the i500:

They sell these online and they hired us to come up with a recommendation system for their 
customers.  To get data to build our system when someone buys a monitor, we ask them to 
fill out the questionnaire. Each question in the questionnaire relates to an attribute. First, we 
ask them what their main reason is for starting an exercise program and have them select 
among three options: health, appearance or both. We ask them what their current exercise 
level is: sedentary, moderate, or active. We ask them how motivated they are: moderate or 
aggressive. And finally we ask them if they are comfortable with using technological devices. 
Our results are as follows.
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iHealth100: 
heart rate, GPS (to compute miles per 
hour, etc), wifi to automatically connect 
to iHealth website to upload data.

iHealth500: 
i100 features + pulse oximetry (oxygen 
in blood) + free 3G connection to 
iHealth website



Main Interest Current 
Exercise Level

How Motivated Comfortable 
with tech. 
Devices?

Model #

both sedentary moderate yes i100

both sedentary moderate no i100

health sedentary moderate yes i500

appearance active moderate yes i500

appearance moderate aggressive yes i500

appearance moderate aggressive no i100

health moderate aggressive no i500

both active moderate yes i100

both moderate aggressive yes i500

appearance active aggressive yes i500

both active aggressive no i500

health active moderate no i500

health sedentary aggressive yes i500

appearance active moderate no i100

health sedentary moderate no i100

s sharpen your pencil 
 
Using the naïve Bayes method, which model would you recommend to a person whose 
 main interest is health
 current exercise level is moderate
 is moderately motivated 
 and is comfortable with technological devices
 
Turn the page if you need a hint!

PROBABILITY AND NAÏVE BAYES
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s sharpen your pencil   clue
 
Ok. So we want to compute 

P(i100 | health, moderateExercise, moderateMotivation, techComfortable) 

and

P(i500 | health, moderateExercise, moderateMotivation, techComfortable) 

and pick the model with the highest probability.

Let me lay out what we need to do for the first one:

P(i100 | health, moderateExercise, moderateMotivation, techComfortable)  = 

P(health|i100) P(moderateExercise|i100) P(moderateMotivated|i100)   
          P(techComfortable|i100)P(i100)

So here is what we need to first compute

P(health|i100) =  1/6

P(moderateExercise|i100)  = 

P(moderateMotivated|i100) = 

P(techComfortable|i100) = 

P(i100) =  6 / 15

That was my clue. Now hopefully you can figure out the example
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There were 6 occurrences of people buying 
i100s and only one of those people had a main 
interest of ‘health’ 



s sharpen your pencil   solution
 
First we compute 

P(i100 | health, moderateExercise, moderateMotivation, techComfortable) 

which equals the product of all these terms:

P(health|i100) P(moderateExercise|i100) P(moderateMotivated|i100)   
          P(techComfortable|i100)P(i100)

P(health|i100) =  1/6
P(moderateExercise|i100)  =  1/6
P(moderateMotivated|i100) =  5/6
P(techComfortable|i100) =  2/6 
P(i100) =  6 / 15

so

P(i100| evidence) = .167 * .167 * .833 * .333 * .4 = .00309

Now we compute

P(i500 | health, moderateExercise, moderateMotivation, techComfortable) 

P(health|i500) =  4/9
P(moderateExercise|i500)  =  3/9
P(moderateMotivated|i500) =  3/9
P(techComfortable|i500) =  6/9 
P(i500) =  9 / 15

P(i500| evidence) = .444 * .333 * .333 * .667 * .6 = .01975

PROBABILITY AND NAÏVE BAYES
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both! ! sedentary! moderate! yes!i100both! ! sedentary! moderate! no! i100health! ! sedentary! moderate! yes!i500appearance! active! ! moderate! yes!i500appearance! moderate! aggressive! yes!i500appearance! moderate! aggressive! no! i100health! ! moderate! aggressive! no! i500both! ! active! ! moderate! yes!i100both! ! moderate! aggressive! yes!i500appearance! active! ! aggressive! yes!i500both! ! active! ! aggressive! no! i500health! ! active! ! moderate! no! i500health! ! sedentary! aggressive! yes!i500appearance! active! ! moderate! no! i100health! ! sedentary! moderate! no! i100

main interest

current exercise level 

how motivated

comfortable with tech 
devices?

which model

Doing it in Python
Great! Now that we understand how a Naïve Bayes Classifier works let us consider how to 
implement it in Python. The format of the data files will be the same as that in the previous 
chapter, a text file where each line consists of tab-separated values. For our iHealth example, 
the data file would look like the following:

Shortly we will be using an example with substantially more data and I would like to keep the 
ten-fold cross validation methods we used in code from the previous chapter. Recall that that 
method involved dividing the data into ten buckets (files). We would train on nine of them 
and test the classifier on the remaining bucket. And we would repeat this ten times; each 
time withholding a different bucket for testing. The simple iHealth example, with only 15 
instances, was designed so we could work through the Naïve Bayes Classifier method by 
hand. With only 15 instances it seems silly to divide them into 10 buckets. The ad hoc, not 
very elegant solution we will use, is to have ten buckets but all the 15 instances will be in one 
bucket and the rest of the buckets will be empty. 
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The Naïve Bayes Classifier code consists of two components, one for training and one for 
classifying. 

Training

I am going to represent the set of prior probabilities as a Python dictionary (hash table):

self.prior = {'i500': 0.6, 'i100': 0.4}

The conditional probabilities are a bit more complex. My way of doing this—and there are 
probably better methods—is to associate a set of conditional probabilities with each class.  

{'i500': {1: {'appearance': 0.3333333333333, 'health': 0.4444444444444,
              'both': 0.2222222222222},
          2: {'sedentary': 0.2222222222222, 'moderate': 0.333333333333,
              'active': 0.4444444444444444},
          3: {'moderate': 0.333333333333, 'aggressive': 0.66666666666},
          4: {'no': 0.3333333333333333, 'yes': 0.6666666666666666}},

 'i100': {1: {'appearance': 0.333333333333, 'health': 0.1666666666666,
              'both': 0.5},
          2: {'sedentary': 0.5, 'moderate': 0.16666666666666,
              'active': 0.3333333333333},
          3: {'moderate': 0.83333333334, 'aggressive': 0.166666666666},
          4: {'no': 0.6666666666666, 'yes': 0.3333333333333}}}

The 1, 2, 3, 4 represent column numbers. So the first line of the above is “the probability of 
the value of the first column being ‘appearance’ given that the device is i500 is 0.333.” 

PROBABILITY AND NAÏVE BAYES
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The output of training needs to be:
• a set of prior probabilities—for example, 

P(i100) = 0.4
• a set of conditional probabilities—for 

example, P(health|i100) = 0.167



The first step in computing these probabilities is simply to count things.  Here are the first 
few lines of the input file:

  

Yet again I am going to use 
dictionaries. One, called, classes, 
which will count the occurrences of 
each class or category. So, after the 
first line classes will look like

{'i100': 1}

After the second line:

{'i100': 2}

And after the third:

{'i500': 1, 'i100': 2}

After I process all the data, the value of classes is 

{'i500': 9, 'i100': 6}

To obtain the prior probabilities I simply divide those number by the total number of 
instances. 

To determine the conditional probabilities I am going 
to count the occurrences of attribute values in the 
different columns in a dictionary called counts. and I 
am going to maintain separate counts for each class.  
So, in processing the string ‘both’ in the first line, counts will be:

{'i100': {1: {'both': 1}}

and at the end of processing the data, the value of counts will be
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both! ! sedentary! moderate! yes!i100
both! ! sedentary! moderate! no! i100
health! ! sedentary! moderate! yes!i500
appearance! active! ! moderate! yes!i500

Counting things

Prior probability

Conditional probability



{'i100': {1: {'appearance':2, 'health': 1, 'both': 3},
          2: {'active': 2, 'moderate': 1, 'sedentary': 3},
          3: {'moderate': 5, 'aggressive': 1},
          4: {'yes': 2, 'no': 4}},
 'i500': {1: {'health': 4, 'appearance': 3, 'both': 2},
          2: {'active': 4, 'moderate': 3, 'sedentary': 2},
          3: {'moderate': 3, 'aggressive': 6},
          4: {'yes': 6, 'no': 3}}}

So, in the first column of the i100 instances there were 2 occurrences of ‘appearance’, 1 of 
‘health’ and 3 of ‘both’. To obtain the conditional probabilities we divide those numbers by 
the total number of instances of that class. For example, there are 6 instances of i100 and 2 of 
them had a value of ‘appearance’ for the first column, so

P(‘appearance’|i100) = 2/6 = .333

With that background here is the Python code for training the classifier (remember, you can 
download this code at guidetodatamining.com).

# _____________________________________________________________________

class BayesClassifier:
    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

        """ a classifier will be built from files with the bucketPrefix
        excluding the file with textBucketNumber. dataFormat is a 
        string that describes how to interpret each line of the data 
        files. For example, for the iHealth data the format is:
        "attr! attr! attr! attr! class"
        """
   
        total = 0
        classes = {}
        counts = {}
        
        # reading the data in from the file
        
        self.format = dataFormat.strip().split('\t')
        self.prior = {}
        self.conditional = {}

PROBABILITY AND NAÏVE BAYES
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        # for each of the buckets numbered 1 through 10:
        for i in range(1, 11):
            #if it is not the bucket we should ignore, read in the data
            if i != testBucketNumber:
                filename = "%s-%02i" % (bucketPrefix, i)
                f = open(filename)
                lines = f.readlines()
                f.close()
                for line in lines:
                    fields = line.strip().split('\t')
                    ignore = []
                    vector = []
                    for i in range(len(fields)):
                        if self.format[i] == 'num':
                            vector.append(float(fields[i]))
                        elif self.format[i] == 'attr':
                            vector.append(fields[i])                           
                        elif self.format[i] == 'comment':
                            ignore.append(fields[i])
                        elif self.format[i] == 'class':
                            category = fields[i]
                    # now process this instance
                    total += 1
                    classes.setdefault(category, 0)
                    counts.setdefault(category, {})
                    classes[category] += 1
                    # now process each attribute of the instance
                    col = 0
                    for columnValue in vector:
                        col += 1
                        counts[category].setdefault(col, {})
                        counts[category][col].setdefault(columnValue,0)
                        counts[category][col][columnValue] += 1
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        #
        # ok done counting. now compute probabilities
        #
        # first prior probabilities p(h)
        #
        for (category, count) in classes.items():
            self.prior[category] = count / total
        #
        # now compute conditional probabilities p(h|D)
        #
        for (category, columns) in counts.items():
              self.conditional.setdefault(category, {})
              for (col, valueCounts) in columns.items():
                  self.conditional[category].setdefault(col, {})
                  for (attrValue, count) in valueCounts.items():
                      self.conditional[category][col][attrValue] = (
                          count / classes[category])

Classifying
Okay, we have trained the classifier. Now we want to classify various instances. For example, 
which model should we recommend for someone whose primary interest is health, and who 
is moderately active, moderately motivated, and is comfortable with technology:

c.classify(['health', 'moderate', 'moderate', 'yes'])

For this we need to compute

hMAP = argmaxh∈H P(D | h)P(h)

PROBABILITY AND NAÏVE BAYES
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That’s it for training! No Complex math. 
Just basic counting!!!



When we did this by hand we computing the probability of each hypothesis given the 
evidence and we simply translate that method to code:

def classify(self, itemVector):
    """Return class we think item Vector is in"""
    results = []
    for (category, prior) in self.prior.items():
        prob = prior
        col = 1
        for attrValue in itemVector:
            if not attrValue in self.conditional[category][col]:
                # we did not find any instances of this attribute value
                # occurring with this category so prob = 0
                prob = 0
            else:
               prob = prob * self.conditional[category][col][attrValue]
               col += 1
        results.append((prob, category))
    # return the category with the highest probability
    return(max(results)[1])

And when I try the code I get the same results we received when we did this by hand:

>>c = Classifier("iHealth/i", 10, "attr\tattr\tattr\tattr\tclass")
>>print(c.classify(['health', 'moderate', 'moderate', 'yes'])
i500
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Republicans vs. Democrats
Let us look at a new data set, the Congressional Voting Records Data Set, available from the 
Machine Learning Repository (http://archive.ics.uci.edu/ml/index.html).  It is available in a 
form that can be used by our programs at http://guidetodatamining.com. The data consists 
of the voting record of United States Congressional Representatives. The attributes are how 
that representative voted on 16 different bills.

The file consists of tab separated values:

PROBABILITY AND NAÏVE BAYES
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Attribute Information:

1. Class Name: 2 (democrat, republican) 
2. handicapped-infants: 2 (y,n) 
3. water-project-cost-sharing: 2 (y,n) 
4. adoption-of-the-budget-resolution: 2 (y,n) 
5. physician-fee-freeze: 2 (y,n) 
6. el-salvador-aid: 2 (y,n) 
7. religious-groups-in-schools: 2 (y,n) 
8. anti-satellite-test-ban: 2 (y,n) 
9. aid-to-nicaraguan-contras: 2 (y,n) 
10. mx-missile: 2 (y,n) 
11. immigration: 2 (y,n) 
12. synfuels-corporation-cutback: 2 (y,n) 
13. education-spending: 2 (y,n) 
14. superfund-right-to-sue: 2 (y,n) 
15. crime: 2 (y,n) 
16. duty-free-exports: 2 (y,n) 
17. export-administration-act-south-africa: 2 (y,n)

democrat y  n  y  n  n  n  y  y  y  n  n  n  n  n  y  y
democrat  y  y  y  n  n  n  y  y  y  y  n  n  n  n  y  y
democrat   y  y  y  n  n  n  y  y  n  n  n  n  n  y  n  y
republican  y  y  y  n  n  y  y  y  y  y  n  n  n  n  n  y



Our Naïve Bayes Classifier works fine with this example (the format string says that the first 
column is to be interpreted as the class of the instance and the rest of the columns are to be 
interpreted as attributes):

format = "””class\tattr\tattr\tattr\tattr\tattr\tattr\tattr\tattr\tattr
\tattr\tattr\tattr\tattr\tattr\tattr\tattr””" 

tenfold("house-votes/hv", format)

            Classified as: 
               democrat   republican   
               +-------+-------+
   democrat    |   111 |    13 |
               |-------+-------|
 republican    |     9 |    99 |
               +-------+-------+

90.517 percent correct
total of 232 instances

That’s great!

To see one of the problems with this 
approach consider a different 
United States House of 
Representatives example. Out of 
the 435 voting representatives
I have drawn a training sample
of 200—100 Democrats and 
100 Republicans. The following
table indicates what percent voted
‘yes‘ to 4 different bills.
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Wait! There are some 
problems with this approach.



This table shows that 99% of Republicans in the sample voted for the CISPA (Cyber 
Intelligence Sharing and Protection Act), only 1% voted for the Reader Privacy Act, 99% 
voted for Internet Sales Tax and 50% voted for the Internet Snooping Bill. (I made up these 
numbers and they do not reflect reality.) We pick a U.S. Representative who wasn’t in our 
sample, Representative X, who we would like to classify as either a Democrat or Republican. 
I added how that representative voted to our table:

CISPA Reader 
Privacy Act

Internet Sales 
Tax

Internet 
Snooping Bill

Republican 0.99 0.01 0.99 0.5

Democrat 0.01 0.99 0.01 1.0

Rep. X N Y N N

PROBABILITY AND NAÏVE BAYES
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CISPA Reader 
Privacy Act

Internet Sales 
Tax

Internet 
Snooping Bill

Republican 0.99 0.01 0.99 0.5

Democrat 0.01 0.99 0.01 1.0

Do you think the person is a Democrat 

or Republican?

% voting ‘yes’



I would guess Democrat. Let us work through the example step-by-step using Naïve Bayes. 
The prior probabilities of P(Democrat) and P(Republican) are both 0.5 since there are 100 
Republicans and 100 Democrats in the sample.  We know that Representative X voted ‘no’ to 
CISPA and we also know

P(Republican|C=no) = 0.01       and   P(Democrat|C=no) = 0.99

where C = CISPA. And with that bit of evidence our current P(h|D) probabilities are 

Factoring in Representative X’s ‘yes’ vote to the Reader Privacy Act and X’s ‘no’ to the sales 
tax bill we get:

If we normalize these probabilities:

P(Democrat |D)= 0.485
0.485 + 0.0000005

= 0.485
0.4850005

= 0.99999

So far we are 99.99% sure Representative X is a Democrat. 

Finally, we factor in Representative X’s ‘no’ vote on the Internet Snooping Bill.

h= p(h) P(C=no|h) P(h|D) 

Republican 0.5 0.01 0.005

Democrat 0.5 0.99 0.495

h= p(h) P(C=no|h) P(R=yes|h) P(T=no|h) P(h|D) 

Republican 0.5 0.01 0.01 0.01 0.0000005

Democrat 0.5 0.99 0.99 0.99 0.485
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Whoops. We went from 99.99% likelihood that X was a Democrat to 0%. This is so because 
we had 0 occurrences of a Democrat voting ‘no’ for the snooping bill.  Based on these 
probabilities we predict that person X is a Republican. This goes against our intuition!

Estimating Probabilities
The probabilities in Naïve Bayes are really estimates of the true probabilities. True 
probabilities are those obtained from the entire population. For example, if we could give a 
cancer test to everyone in the entire population, we could, for example, get the true 
probability of the test returning a negative result given that the person does not have cancer. 
However, giving the test to everyone is near impossible. We can estimate that probability by 
selecting a random representative sample of the population, say 1,000 people,  giving the test  
to them, and computing the probabilities. Most of the time this gives us a very good estimate 
of the true probabilities, but when the true probabilities are very small, these estimates are 
likely to be poor. Here is an example. Suppose the true probability of a Democrat voting no to 
the Internet Snooping Bill is 0.03—P(S=no|Democrat) = 0.03. 

h= p(h) P(C=no|h) P(R=yes|h) P(T=no|h) P(S=no|h) P(h|D) 

Republican 0.5 0.01 0.01 0.01 0.50 2.5E-07

Democrat 0.5 0.99 0.99 0.99 0.00 0

s Brain Calisthenics 
 
Suppose we try to estimate these probabilities by selected a sample of 10 Democrats 
and 10 Republicans. What is the most probable number of Democrats in the sample that 
voted no to the snooping bill?

PROBABILITY AND NAÏVE BAYES
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☐0
☐1

☐2
☐3



As we just saw in the previous example, when a probability is 0 it dominates the Naïve Bayes 
calculation—it doesn’t matter what the other values are. Another problem is that 
probabilities based on a sample produce a biased underestimate of the true probability.

Fixing this. 
If we a trying to calculate something like P(S=no|Democrat) our calculation has been

For expository ease let me simplify this by using shorter variable  
names:

                   P(x | y) = nc
n

Here n is the total number of instances of class y in the training 
set; nc is the total number of instances of class y that have the 
value x. 

s Brain Calisthenics—answer 
 
Suppose we try to estimate these probabilities by selected a sample of 10 Democrats 
and 10 Republicans. What is the most probable number of Democrats in the sample that 
voted no to the snooping bill?

   0

So based on the sample P(S=no|Democrat) = 0.
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the number that both are Democrats and voted no on the snooping bill.
P(S=no|Democrat) =

total number of Democrats



The problem we have is when nc equals zero. We can eliminate this problem by changing the 
formula to:

              P(x | y) = nc +mp
n +m

m is a constant called the equivalent sample size. 
The method for determining the value of m varies. 
For now I will use the number of different values that 
attribute takes. For example, there are 2 values for how a 
person voted on the snooping bill, yes, or no.  So I will use 
an m of 2.  p is the prior estimate of the probability. Often 
we assume uniform probability. For example, what is the 
probability of someone voting no to the snooping bill 
knowing nothing about that person?  1/2.  So p in this case is 
1/2.

Let’s go through the previous example to see how this works. 
First, here are tables showing the vote:

This formula is from p179 of the book “Machine Learning” by Tom Mitchell.

CISPA Reader 
Privacy Act

Internet Sales 
Tax

Internet 
Snooping Bill

Yes 99 1 99 50

No 1 99 1 50

CISPA Reader 
Privacy Act

Internet Sales 
Tax

Internet 
Snooping Bill

Yes 1 99 1 100

No 99 1 99 0

PROBABILITY AND NAÏVE BAYES

6-41

Republican Vote

Democratic Vote



The person we are trying to classify voted no to CISPA. First we compute the probability that 
he’s a Republican given that vote. Our new formula is

P(x | y) = nc +mp
n +m

n  is the number of Republicans, which is 100 and nc is the number of Republicans who voted 
no to CISPA, which is 1. m is the number of values for the attribute “how they voted on 
CISPA”, which is 2 (yes or no).  So plugging those number into our formula 

P(cispa = no | republican) = 1+ 2(.5)
100 + 2

= 2
102

= 0.01961

We follow the same procedure for a person voting no to CISPA given they are a Democrat.

P(cispa = no | democrat) = 99 + 2(.5)
100 + 2

= 100
102

= 0.9804

With that bit of evidence our current P(h|D) probabilities are 

Factoring in Representative X’s ‘yes’ vote to the Reader Privacy Act and X’s ‘no’ to the sales

h= p(h) P(C=no|h) P(h|D) 

Republican 0.5 0.01961 0.0098

Democrat 0.5 0.9804 0.4902

s sharpen your pencil 
 
Finish this problem and classify the individual as either a Republican or Democrat.

Recall, he voted no to Cispa, yes to the Reader Privacy act, and no both to the sales tax 
and snooping bills.
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s sharpen your pencil -answer
 
Finish this problem and classify the individual as either a Republican or Democrat.

Recall, he voted no to CISPA, yes to the Reader Privacy act, and no both to the Internet 
sales tax and snooping bills.

The calculations for the next 2 columns mirror those we did for the CISPA vote.  The 
probability that this person voted no to the snooping bill given that he is a Republican is

P(s = no | republican) = 50 + 2(.5)
100 +2

= 51
102

= 0.5

and that he voted no given that he is a Democrat:

P(s = no | democrat) = 0 + 2(.5)
100 +2

= 1
102

= 0.0098

Multiplying those probabilities together gives us

h= p(h) P(C=no|h) P(R=yes|h) P(I=no|h) P(S=no|h) P(h|D) 

Republican 0.5 0.01961 0.01961 0.01961 0.5 0.000002

Democrat 0.5 0.9804 0.9804 0.9804 0.0098 0.004617

So unlike the previous approach we would classify this individual as a Democrat. This 
matches our intuitions.

PROBABILITY AND NAÏVE BAYES
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A clarification
For this example, the value of m was 2 for all calculations.  However, it is not the case that m 
remains necessarily constant across attributes.  Consider the health monitor example 
discussed earlier in the chapter. The attributes for that example included:

Let us say the number of the people surveyed who own the i500 monitor is 100 (this is n). 
The number of people who own a i500 and are sedentary is 0 (nc). So, the probability of 
someone being sedentary given they own an i500 is    

P(sedentary | i500) = nc +mp
n +m

= 0 + 3(.333)
100 + 3

= 1
103

= 0.0097
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survey

What is your main interest in getting a monitor? ◦  health
 ● appearance
 ◦ both

What is your current exercise level? ● sedentary 
 ◦ moderate
 ◦ active

Are you comfortable with tech devices? ● yes
 ◦ no

For this attribute, m = 3 since the attribute can take one of 3 values (health, appearance, both). If we assume uniform probabilities, then p = 1/3 since the probability of the attribute being any one of the values is 
This attribute also has m = 3 and p = 1/3 

For this attribute, m = 2 since the attribute can take one of 2 values and p = 1/2 since the probability of the attribute being any one of those is 1/2



Numbers
You probably noticed that I changed from numerical data which I used in all the nearest 
neighbor approaches I discussed to using categorical data for the naïve Bayes formula. By 
“categorical data” we mean that the data is put into discrete categories. For example, we 
divide people up in how they voted for a particular bill and the people who voted ‘yes’ go in 
one category and the people who voted ‘no’ go in another. Or we might categorize musicians 
by the instrument they play. So all saxophonists go in one bucket, all drummers in another, 
all pianists in another and so on. And these categories do not form a scale. So, for example, 
saxophonists are not ‘closer’ to pianists than they are to drummers.  Numerical data is on a 
scale. An annual salary of $105,000 is closer to a salary of $110,000 than it is to one of 
$40,000. 

For Bayesian approaches we count things—how many occurrences are there of people who 
are sedentary—and it may not be initially obvious how to count things that are on a scale—for  
example, something like grade point average. There are two approaches.

Method 1: Making categories
One solution is to make categories by discretizing the continuous attribute. You often see this 
on websites and on survey forms. For example:

Once we have this information divided 
nicely into discrete values, we can use 
Naïve Bayes exactly as we did before.
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Age
 ◦ < 18
 ◦ 18-22
 ◦ 23-30
 ◦ 30-40
 ◦ > 40

Annual Salary
 ◦ > $200,000

 ◦ 150,000 - 200,000

 ◦ 100,00 - 150,000

 ◦ 60,000-100,000

 ◦ 40,000-60,000



Method 2: Gaussian distributions!

6-46

Harumph!  Well I 
would take that income 
attribute and discretize it 
into distinct categories! 
Then we can use Naïve 
Bayes! 

That’s sort of old 
school. I would just use a 
Gaussian distribution and 
deal with that attribute 
using a probability density 
function. We can still use 
Bayes.



The terms “Gaussian Distribution” and “Probability Density Function” sound cool, but they 
are more than good phrases to know so you can impress your friends at dinner parties.   So 
what do they mean and how they can be used with the Naïve Bayes method? Consider the 
example we have been using with an added attribute of income:

Main Interest Current 
Exercise Level

How Motivated Comfortable 
with tech. 
Devices?

Income 
(in $1,000)

Model #

both sedentary moderate yes 60 i100

both sedentary moderate no 75 i100

health sedentary moderate yes 90 i500

appearance active moderate yes 125 i500

appearance moderate aggressive yes 100 i500

appearance moderate aggressive no 90 i100

health moderate aggressive no 150 i500

both active moderate yes 85 i100

both moderate aggressive yes 100 i500

appearance active aggressive yes 120 i500

both active aggressive no 95 i500

health active moderate no 90 i500

health sedentary aggressive yes 85 i500

appearance active moderate no 70 i100

health sedentary moderate no 45 i100

Let’s think of the typical purchaser of an i500, our awesome, premiere device. If I were to ask 
you to describe this person you might give me the average income:

mean = 90 +125 +100 +150 +100 +120 + 95 + 90 + 85
9

= 955
9

= 106.111

And perhaps after reading chapter 4 you might give the standard deviation:

PROBABILITY AND NAÏVE BAYES

6-47



Recall that the standard deviation describes the range of scattering. If all the values are 
bunched up around the mean, the standard deviation is small; if the values are scattered the 
standard deviation is large

s sharpen your pencil 
 
What is the income standard deviation of the people who bought the i500? (those 
values are shown in the column below)
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sd =
(xi − x )

2

i
∑
card(x)

Income 
(in $1,000)
90

125

100

150

100

120

95

90

85



s sharpen your pencil - solution 
 
What is the standard deviation of the income of the people who bought the i500? 
(those values are shown in the column above)

Income 
(in $1,000)

(x-106.111) (x-106.111)2

90 -16.111 259.564

125 18.889 356.794

100 -6.111 37.344

150 43.889 1926.244

100 -6.111 37.344

120 13.889 192.904

95 -11.111 123.454

90 -16.111 259.564

85 -21.111 445.674

                              ∑ = 3638.889
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sd = 3638.889
9

= 404.321 = 20.108



Population standard deviation and sample standard deviation.
The formula for standard deviation that we just used is called the population standard 
deviation.  It is called that because we use this formula when we have data on the entire 
population we are interested in. For example, we might give a test to 500 students and then 
compute the mean and standard deviation. In this case, we would use the population 
standard deviation, which is what we have been using. Often, though, we do not have data on 
the entire population. For example, suppose I am interested in the effects of drought on the 
deer mice in Northern New Mexico and as part of that study I want the average (mean) and 
standard deviation of their weights. In this case I am not going to weigh every mouse in 
Northern New Mexico. Rather I will collect and weigh some representative sample of mice. 

For this sample, I can use the standard deviation formula I used above, but there is another 
formula that has been shown to be a better estimate of the entire population standard 
deviation. This formula is called the sample standard deviation and it is just a slight 
modification of the previous formula:

The sample standard deviation of the income example is

sd =
(xi − x )

2

i
∑
card(x)−1
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For the rest of this chapter we will be using sample standard deviation.

You probably have heard terms such as normal distribution, bell curve, and Gaussian 
distribution. Gaussian distribution is just a high falutin term for normal distribution. The 
function that describes this distribution is called the Gaussian function or bell curve. Most of 
the time the Numerati (aka data miners) assume attributes follow a Gaussian distribution. 
What is means is that about 68% of the instances in a Gaussian distribution fall within 1 
standard deviation of the mean and 95% of the instances fall within 2 standard deviations of 
the mean:

In our case, the mean was 106.111 and the sample standard deviation was 21.327. So  95% of 
the people who purchase an i500 earn between $42,660 and $149,770. If I asked you if you 
thought P(100k| i500) —the likelihood that an i500 purchaser earns $100,000—was, you 
might think that's pretty likely. If I asked you what you thought the likelihood of 
P(20k| i500)—the likelihood that an i500 purchaser earns $20,000—was , you might think it 
was pretty unlikely. 

sd = 3638.889
9 −1

= 3638.889
8

= 454.861 = 21.327
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To formalize this, we are going to use the mean and standard deviation to compute this 
probability as follows:

                            P(xi | yj ) =
1
2πσ ij

e
−(xi−µij )

2

2σ ij
2

      

Let’s jump right into dissecting this formula so we can see how simple it really is. Let us say 
we are interested in computing P(100k|i500), the probability that a person earns $100,000  
(or 100k) given they purchased an i500. A few pages ago we computed the average income 
(mean) of people who bought the i500. We also computed the sample standard deviation.  
These values are shown on the following page.  In Numerati speak, we represent the mean 
with the Greek letter µ (mu) and the standard deviation as σ (sigma). 
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Everytime I type a complex looking 
formula into this book, I feel the 
need to say something like “don’t 
panic.”  It could be that none of you 
readers panic and I am just the one 
panicking. 

However, let me say this.
Data mining has professional 
terminology and formulas. Before 
you dive into data mining you might 
think “those things look difficult.” 
But after you study, even for a 
short time, these formulas become 
nothing special. It is just a matter of 
working through the formula out 
step-by-step.

Maybe putting the formula in a bigger 
font makes it look simpler!



P(xi | yj ) =
1
2πσ ij

e
−(xi−µij )

2

2σ ij
2

Let’s plug these values into the formula:

P(xi | yj ) =
1

2π (21.327)
e
−(100−106.111)2

2(21.327)2

and do some math:

P(xi | yj ) =
1

6.283(21.327)
e
−(37.344)
909.68

and more math:

P(xi | yj ) =
1

53.458
e−0.0411

The e is a mathematical constant that is the base of the natural logarithm. It’s value is 
approximately 2.718.

P(xi | yj ) =
1

53.458
(2.718)−0.0411 = (0.0187)(0.960) = 0.0180

So the probability that the income of a person who bought the i500 is $100,000 is 0.0180.
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µij = 106.111
σij = 21.327
xi = 100



s sharpen your pencil 
 
In the table below I have the horsepower ratings for cars that get 35 miles per gallon.  
I would like to know the probability of a Datsun 280z having 132 horsepower given it 
gets 35 miles per gallon.
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car HP

Datsun 210 65

Ford Fiesta 66

VW Jetta 74

Nissan Stanza 88

Ford Escort 65

Triumph tr7 coupe 88

Plymouth Horizon 70

Suburu DL 67

μij = _____

σij = _____

xi = _____



s sharpen your pencil -solution - part 1
 
In the table below I have the horsepower ratings for cars that get 35 miles per gallon.  
I would like to know the probability of a Datsun 280z having 132 horsepower given it 
gets 35 miles per gallon.

σ = (65 −µ)2 +(66 −µ)2 + (74 −µ)2 + (88 −µ)2 + (65 −µ)2 + (88 −µ)2 + (70 −µ)2 + (67 −µ)2

7

σ = 672.875
7

= 96.126 = 9.804
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car HP

Datsun 210 65

Ford Fiesta 66

VW Jetta 74

Nissan Stanza 88

Ford Escort 65

Triumph tr7 coupe 88

Plymouth Horizon 70

Suburu DL 67

μij = 72,875 

σij = 9.804

xi =132



s sharpen your pencil -solution - part 2
 
In the table below I have the horsepower ratings for cars that get 35 miles per gallon.  
I would like to know the probability of a Datsun 280z having 132 horsepower given it 
gets 35 miles per gallon.

Ok. it is extremely unlikely that a Datsun 280z, given that it gets 35 miles to the gallon 
has 132 horsepower. (but it does!)
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μij = 72,875 

σij = 9.804

xi =132

P(xi | yj ) =
1
2πσ ij

e
−(xi−µij )

2

2σ ij
2

P(132hp | 35mpg) = 1
2π (9.804)

e
−(132−72.875)2

2(9.804)2

= 1
6.283(9.804)

e
−3495.766
192.237 = 1

24.575
e−18.185

= 0.0407(0.00000001266)
= 0.0000000005152



A few implementation notes.
In the training phase for Naive Bayes, we will compute the mean and sample standard 
deviation of every numeric attribute.  Shortly, we will see how to do this in detail. 

In the classification phase, the above formula can be implemented with just a few lines of 
Python:

import math

def pdf(mean, ssd, x):
   """Probability Density Function  computing P(x|y)
   input is the mean, sample standard deviation for all the items in y,
   and x."""
   ePart = math.pow(math.e, -(x-mean)**2/(2*ssd**2))
   return (1.0 / (math.sqrt(2*math.pi)*ssd)) * ePart

Let’s test this with the examples we did above:

>>>pdf(106.111, 21.327, 100)
0.017953602706962717

>>>pdf(72.875, 9.804, 132)
5.152283971078022e-10
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6-57

Whew! Time for a break!



Python Implementation
Training Phase
The Naïve Bayes method relies on prior and conditional probabilities. Let’s go back to our 
Democrat/Republican example. Prior probabilities are the probabilities  that hold before we 
have observed any evidence. For example, if I know there are 233 Republicans and 200 
Democrats, then the prior probability of some arbitrary member of the U.S. House of 
Representatives being a Republican is 

P(republican) = 233
433

= 0.54

This is denoted P(h). Conditional Probability P(h|D) is the probability that h holds given that 
we know D, for example, P(democrat|bill1Vote=yes). In Naïve Bayes, we flip that probability 
and compute P(D|h)—for example,  P(bill1Vote=yes|democrat).

In our existing Python program we store these conditional probabilities in a dictionary of the 
following form:

{'democrat': {'bill 1': {'yes': 0.333, 'no': 0.667},
              'bill 2': {'yes': 0.778, 'moderate': 0.222}}

 'republican': {'bill 1': {'yes': 0.811, 'no': 0.189},
                'bill 2': {'yes': 0.250, 'no': 0.750}}}

So the probability that someone voted yes to bill 1 given that they are a Democrat 
(P(bill 1=yes|democrat)) is 0.333.

We will keep this data structure for attributes whose values are discrete values (for example, 
‘yes’, ‘no’, ‘sex=male’, ‘sex=female’). However, when attributes are numeric we will be using 
the probability density function and we need to store the mean and sample standard 
deviation for that attribute.  For these numeric attributes I will use the following structures:
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mean = {'democrat': {'age': 57,  'years served': 12}
        'republican': {'age': 53, 'years served': 7}}

ssd = {'democrat': {'age': 7,  'years served': 3}
       'republican': {'age': 5, 'years served': 5}}

As before, each instance is represented by a line in a data file. The attributes of each 
instances are separated by tabs. For example, the first few lines of a data file for the Pima 
Indians Diabetes Data set might be:

The columns represent, in 
order, the number of times 
pregnant, plasma glucose 
concentration, blood pressure, 
triceps skin fold thickness, 
serum insulin level, body mass 
index, diabetes pedigree 
function, age, and a ‘1’ in the 
last column represents that 
they developed diabetes and a 
‘0’ they did not.

Also as before, we are going to represent how the program should interpret each column by 
use of a format string, which uses the terms 

• attr identifies columns that should be interpreted as non-numeric attributes, and which 
will use the Bayes methods shown earlier in this chapter.

• num  identifies columns that should be interpreted as numeric attributes, and which will 
use the Probability Density Function (so we will need to compute the mean and standard 
deviation during training).

• class identifies the column representing the class of the instance (what we are trying to 
learn)

PROBABILITY AND NAÏVE BAYES
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3! 78! 50! 32! 88! 31.0! 0.248! 26! 1
4! 111!72! 47! 207!37.1! 1.390! 56! 1
1! 189!60! 23! 846!30.1! 0.398! 59! 1
1! 117!88! 24! 145!34.5! 0.403! 40! 1
3! 107!62! 13! 48! 22.9! 0.678! 23! 1
7! 81! 78! 40! 48! 46.7! 0.261! 42! 0
2! 99! 70! 16! 44! 20.4! 0.235! 27! 0
5! 105!72! 29! 325!36.9! 0.159! 28! 0
2! 142!82! 18! 64! 24.7! 0.761! 21! 0
1! 81! 72! 18! 40! 26.6! 0.283! 24! 0
0! 100!88! 60! 110!46.8! 0.962! 31! 0



In the Pima Indian Diabetes data set the format string will be

To compute the mean and sample standard deviation we will need some temporary data 
structures during the training phase. Again, let us look at a small sample of the Pima data set.

The last column represents the class of each instance. So the first three individuals developed 
diabetes and that last three did not.  All the other columns represent numeric attributes. of 
which we need to compute the mean and standard deviation for each of the two classes. To 
compute the mean for each class and attribute I will need to keep track of  the running total.  
In our existing code we already keep track of the total number of instances.  I will implement 
this using a dictionary:

totals   {'1': {1: 8, 2: 378, 3: 182, 4: 102, 5: 1141, 
              6: 98.2, 7: 2.036, 8: 141},

         {'0': {1: 3, 2: 323, 3: 242, 4: 96, 5: 214, 
              6: 98.1, 7: 2.006, 8: 76}

So  for class 1, the column 1 total is 8 (3 + 4 + 1), the column 2 total is 378, etc.

For class 0, the column 1 total is 3 (2 + 1 + 0), the column 2 total is 323 and so on.

For standard deviation, we will also need to keep the original data, and for that we will use a 
dictionary in the following format:

3! 78! 50! 32! 88! 31.0! 0.248! 26! 1
4! 111!72! 47! 207!37.1! 1.390! 56! 1
1! 189!60! 23! 846!30.1! 0.398! 59! 1
2! 142!82! 18! 64! 24.7! 0.761! 21! 0
1! 81! 72! 18! 40! 26.6! 0.283! 24! 0
0! 100!88! 60! 110!46.8! 0.962! 31! 0
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"num   num    num    num   num   n
um   num   num   class"



numericValues

         {'1': 1: [3, 4, 1], 2: [78, 111, 189], ...},

         {'0': {1: [2, 1, 0], 2: [142, 81, 100]}

I have added the code to create these temporary data structures to the __init__() method 
of our Classifier class as shown below:

import math

class Classifier:
    def __init__(self, bucketPrefix, testBucketNumber, dataFormat):

        """ a classifier will be built from files with the bucketPrefix
        excluding the file with textBucketNumber. dataFormat is a string that
        describes how to interpret each line of the data files. For example,
        for the iHealth data the format is:
        "attr!attr! attr! attr! class"
        """
        total = 0
        classes = {}
        # counts used for attributes that are not numeric
        counts = {}
        # totals used for attributes that are numereric
        # we will use these to compute the mean and sample standard deviation
        # for  each attribute - class pair.
        totals = {}
        numericValues = {}

        # reading the data in from the file
        self.format = dataFormat.strip().split('\t')
        # 
        self.prior = {}
        self.conditional = {}
 
        # for each of the buckets numbered 1 through 10:
        for i in range(1, 11):
            # if it is not the bucket we should ignore, read in the data
            if i != testBucketNumber:
                filename = "%s-%02i" % (bucketPrefix, i)
                f = open(filename)
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                lines = f.readlines()
                f.close()
                for line in lines:
                    fields = line.strip().split('\t')
                    ignore = []
                    vector = []
                    nums = []
                    for i in range(len(fields)):
                        if self.format[i] == 'num':
                            nums.append(float(fields[i]))
                        elif self.format[i] == 'attr':
                            vector.append(fields[i])                           
                        elif self.format[i] == 'comment':
                            ignore.append(fields[i])
                        elif self.format[i] == 'class':
                            category = fields[i]
                    # now process this instance
                    total += 1
                    classes.setdefault(category, 0)
                    counts.setdefault(category, {})
                    totals.setdefault(category, {})
                    numericValues.setdefault(category, {})
                    classes[category] += 1
                    # now process each non-numeric attribute of the instance
                    col = 0
                    for columnValue in vector:
                        col += 1
                        counts[category].setdefault(col, {})
                        counts[category][col].setdefault(columnValue, 0)
                        counts[category][col][columnValue] += 1
                    # process numeric attributes
                    col = 0
                    for columnValue in nums:
                        col += 1
                        totals[category].setdefault(col, 0)
                        #totals[category][col].setdefault(columnValue, 0)
                        totals[category][col] += columnValue
                        numericValues[category].setdefault(col, [])
                        numericValues[category][col].append(columnValue)
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        #
        # ok done counting. now compute probabilities
        # first prior probabilities p(h)
        #
        for (category, count) in classes.items():
            self.prior[category] = count / total
        #
        # now compute conditional probabilities p(h|D)
        #
        for (category, columns) in counts.items():
              self.conditional.setdefault(category, {})
              for (col, valueCounts) in columns.items():
                  self.conditional[category].setdefault(col, {})
                  for (attrValue, count) in valueCounts.items():
                      self.conditional[category][col][attrValue] = (
                          count / classes[category])
        self.tmp =  counts               
        #
        # now compute mean and sample standard deviation
        #

s code it

Can you add the code to compute the means and standard deviations? Download the 
file naiveBayesDensityFunctionTraining.py from guidetodatamining.com.

Your program should produce the data structures ssd and means:

c = Classifier("pimaSmall/pimaSmall",  1, 
               "num!num! num! num! num! num! num! num! class")
>> c.ssd
{'0': {1: 2.54694671925252, 2: 23.454755259159146,  ...}, 
 '1': {1: 4.21137914295475, 2: 29.52281872377408,}}
>>> c.means
{'0': {1: 2.8867924528301887, 2: 111.90566037735849,  ...}, 
 '1': {1: 5.25, 2: 146.05555555555554, ...}}
!
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s code it solution

Here is my solution:

        #
        # now compute mean and sample standard deviation
        #
        self.means = {}
        self.ssd = {}
        self.totals = totals
        for (category, columns) in totals.items():
            self.means.setdefault(category, {})
            for (col, cTotal) in columns.items():
                self.means[category][col] = cTotal / classes[category]
        # standard deviation
        
        for (category, columns) in numericValues.items():
            
            self.ssd.setdefault(category, {})
            for (col, values) in columns.items():
                SumOfSquareDifferences = 0
                theMean = self.means[category][col]
                for value in values:
                    SumOfSquareDifferences += (value - theMean)**2
                columns[col] = 0
                self.ssd[category][col] = math.sqrt(SumOfSquareDifferences 
                                          / (classes[category]  - 1))

The file containing this solution is naiveBayesDensityFunctionTrainingSolution.py at our 
website.
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s code it  2

Can you revise the classify method so it uses the probability density function for 
numeric attributes? The file to modify is naiveBayesDensityFunctionTemplate.py. Here 
is the original classify method:

 def classify(self, itemVector, numVector):
        """Return class we think item Vector is in"""
        results = []
        sqrt2pi = math.sqrt(2 * math.pi)
        for (category, prior) in self.prior.items():
            prob = prior
            col = 1
            for attrValue in itemVector:
                if not attrValue in self.conditional[category][col]:
                   # we did not find any instances of this attribute value
                   # occurring with this category so prob = 0
                   prob = 0
                else:
                   prob = prob * self.conditional[category][col][attrValue]
                col += 1
        # return the category with the highest probability
        #print(results)
        return(max(results)[1])

PROBABILITY AND NAÏVE BAYES
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s code it  2 - solution

Can you revise the classify method so it uses the probability density function for 
numeric attributes? The file to modify is naiveBayesDensityFunctionTemplate.py.

Solution:

     
  def classify(self, itemVector, numVector):
        """Return class we think item Vector is in"""
        results = []
        sqrt2pi = math.sqrt(2 * math.pi)
        for (category, prior) in self.prior.items():
            prob = prior
            col = 1
            for attrValue in itemVector:
                if not attrValue in self.conditional[category][col]:
                   # we did not find any instances of this attribute 
value
                   # occurring with this category so prob = 0
                   prob = 0
                else:
                   prob = prob * self.conditional[category][col]
[attrValue]
                col += 1
            col = 1
            for x in  numVector:
                mean = self.means[category][col]
                ssd = self.ssd[category][col]
                ePart = math.pow(math.e, -(x - mean)**2/(2*ssd**2))
                prob = prob * ((1.0 / (sqrt2pi*ssd)) * ePart)
                col += 1
            results.append((prob, category))
        # return the category with the highest probability
        #print(results)
        return(max(results)[1])
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Is this any better than the Nearest Neighbor Algorithm?
In Chapter 5 we evaluated how well the k Nearest Neighbor algorithm did with both the total 
Pima data set and a subset. Here are those results:

Here are the results when we use Naïve Bayes with these two data sets:

PROBABILITY AND NAÏVE BAYES
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pimaSmall pima

k=1 59.00% 71.247%

k=3 61.00% 72.519%

pimaSmall pima

Bayes 72.000% 77.354%

Wow! So it looks 
like Naïve Bayes performs 
better than kNN!

The kappa score for 
the kNN where k=3 on the 
large data set was 0.35415, 
only fair performance. I 
wonder what kappa is for 
Naïve Bayes?
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The kappa is 0.4875, moderate agreement!

Advantages of Bayes
• simple to implement (just counting 

things)
• need less training data than many other 

methods
• a good method to use if you want 

something that performs well and has 
good performance times. 

Main disadvantage of Bayes:  

It cannot learn interactions among 
features. For example, it cannot learn that 
I like foods with cheese and I like foods 
with rice but I do not like foods with both 

Advantages of kNN
• simple to implement. 
• does not assume the data has any 

particular structure—a good thing!
• large amount of memory needed to 

store the training set.

kNN

k Nearest Neighbors is a reasonable choice when 
the training set is large. kNN is extremely versatile 
and used in a large number of fields including 
recommendation systems, proteomics (the study of 
the entire protein set of an organism), the 
interaction among proteins, and image 
classification.

So for this example, Naïve Bayes is better than k 



What enables us to multiple probabilities together is the fact that the events these 
probabilities represent are independent. For example, consider a game where we flip a coin 
and roll a die. These events are independent meaning what we roll on the die does not 
depend on whether we flip a heads or tails on the coin. And, as I just said, if events are 
independent we can determine their joint probability (the probability that they both 
occurred) by multiplying the individual probabilities together. So the probability of getting a 
heads and rolling a 6 is 

  P(heads ∧ 6) = P(heads)× P(6) = 0.5 × 1
6
= 0.08333

Let's say I alter a deck of cards keeping all the black cards (26 of them) but only retaining the 
face cards for the red suits (6 of them).  That makes a 32 card deck.  What is the probability 
of selecting a face card? 

  P( facecard) = 12
32

= 0.375

PROBABILITY AND NAÏVE BAYES
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The probability of selecting a red card is

    P(red) = 6
32

= 0.1875

What is the probability of selecting a single card that is both red and a face card? Here we do 
not multiply probabilities. We do not do

 P(red ∧ facecard) = P(red)× P( facecard) = 0.375 × 0.185 = 0.0703

Here is what our common sense tells us. The chance of picking a red card is .1875. But if we 
pick a red card it is 100% likely it will be a face card. So it seems that the probability of 
picking a card that is both red and a face card is .1875.   

Or we can start a different way. The probability of picking a face card is .375. The way the 
deck is arranged half the face cards are red. So the probability of picking a card that is both 
red and a face card is .375 * .5 = .1875.

Here we cannot multiply probabilities together because the attributes are not independent—
if we pick red the probability of a face card changes—and vice versa. 

In many if not most real world data mining problems there are attributes that are not 
independent.

6-70

Consider the athlete data. Here we had 
2 attributes weight and height. Weight 
and height are not independent. The 
taller you get the more likely you will be 
heavier.

Suppose I have attributes zip code, 
income, and age. These are not independent. Certain zipcodes have big bucks houses 
others consist of trailer parks. Palo Alto zipcodes may be dominated by 20-
somethings—Arizona zipcodes may be 
dominated by retirees.



Think about cases yourself. For example, consider attributes of cars. Are they independent? 
Attributes of a movie? Amazon purchases?

So, for Bayes to work we need to use attributes that are independent, but most real-world 
problems violate that condition. What we are going to do is just to assume that they are 
independent! We are using the magic wand of sweeping things under the rug™—and 
ignoreing this problem.  We call it naïve Bayes because we are naïvely assuming 
independence even though we know it is not.  It turns out that naïve Bayes works really, 
really, well even with this naïve assumption.

s code it 

Can you run the naïve Bayes code on our other data sets? For example, our kNN 
algorithm was 53% accurate on the auto MPG data set. Does a Bayes approach 
produce better results?

tenfold("mpgData/mpgData", "class attr! num  num  num  num! comment")

?????
!

PROBABILITY AND NAÏVE BAYES
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Think about the music attributes—things 

like amount of distorted guitar (1-5 

scale), amount of classical violin sound. 

Here many of these attributes are not 

independent. If I have a lot of distorted 

guitar sound, the probability of having a 

classical violin sound decreases. 

Suppose I have a dataset consisting of 
blood test results. Many of these values 
are not independent. For example, there 
are multiple thyroid tests including free 
T4 and TSH. There is an inverse 
relationship between the values of 
these two tests.



Chapter 7:  Naïve Bayes and Text

Classifying 
unstructured text

In previous chapters  we've looked at recommendation systems that have people explicitly 
rate things with star systems (5 stars for Phoenix), thumbs-up/thumbs-down (Inception-- 
thumbs-up!), and numerical scales. We've looked at implicit things like the behavior of 
people—did they buy the item, did they click on a link.  We have also looked at classification 
systems that use attributes like height, weight,  how people voted on a particular bill. In all 
these cases the information in the datasets can easily be represented in a table.

 

age glucose
level

blood 
pressure

diabetes?

26 78 50 1

56 111 72 1

23 81 78 0

mpg
cylinders HP

sec. 0-60
30

4
68

19.5
45

4
48

21.7
20

8
130

12



This type of data  is called “structured data”—data where instances (rows in the tables above) 
are described by a set of attributes (for example, a row in a table might describe a car by a set 
of attributes including miles per gallon, the number of cylinders and so on). Unstructured 
data includes things like email messages, twitter messages, blog posts, and newspaper 
articles. These types of things (at least at first glance) do not seem to be neatly represented in 
a table. 

For example, suppose we are interested in determining whether various movies are good or 
not good and we want to analyze Twitter messages:

We, as speakers of English can see that Andy Gavin likes Gravity, since he said “puts the 
thrill back in thriller” and “good acting.”  We know that Debra Murphy seems not so excited 
about the movie since she said “save your $$$.” And if someone writes “I wanna see Gravity 
sooo bad, we should all go see it!!!” that person probably likes the movie even though they 
used the word bad. 

Suppose I am at my local food co-op and see something called Chobani Greek Yogurt. It looks 
interesting but is it any good?  I get out my iPhone, do a google search and find the following 
from the blog  “Woman Does Not Live on Bread Alone”:
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Chobani nonfat greek yogurt.

Have you ever had greek yogurt? If not, stop reading, gather your keys (and a coat if 
you live in New York) and get to your local grocery. Even when nonfat and plain, greek 
yogurt is so thick and creamy, I feel guilty whenever I eat it. It is definitely what yogurt 
is MEANT to be. The plain flavor is tart and fantastic. Those who can have it, try the 
honey version. There's no sugar, but a bit of honey for a taste of sweetness (or add your 
own local honey-- local honey is good for allergies!). I must admit, even though I'm not 
technically supposed to have honey, if I've had a bad day, and just desperately need 
sweetness, I add a teaspoon of honey to my yogurt, and it's SO worth it. The fruit 
flavors from Chobani all have sugar in them, but fruit is simply unnecessary with this 
delicious yogurt. If your grocery doesn't carry the Chobani brand, Fage (pronounced 
Fa-yeh) is a well known, and equally delicious brand.

Now, for Greek yogurt, you will pay about 50 cents to a dollar more, and there are 
about 20 more calories in each serving. But it's worth it, to me, to not feel deprived and 
saddened over an afternoon snack!

http://womandoesnotliveonbreadalone.blogspot.com/2009/03/sugar-free-yogurt-reviews.html

Is that a positive or negative review for Chobani? Even based on the second sentence: If not, 
stop reading, gather your keys … and get to your local grocery store, it seems that this will 
be a positive review. She describes the flavor as fantastic and calls the yogurt delicious.  It 
seems that I should buy it and check it out.  I will be right back...

NAIVE BAYES AND TEXT
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An automatic system for determining positive and negative texts.

Let's imagine an automatic system that can read some text and decide whether it is a positive 
or negative report about a product.  Why would we want such a system? Suppose there is a 
company that sells health monitors, they might want to know about what people are saying 
about their products. Are what people say mostly positive or negative? They release an ad 
campaign for a new product. Are people favorable about the product (Man, I sooo want this!)  
or negative (looks like crap). Apple has a press conference to talk about the iPhone problems.  
Is the resulting press coverage positive? A Senate candidate delivers a major policy speech—
do the political bloggers view it favorably? So an automatic system does sound useful.
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John, that looks like a positive tweet for Gravity!

So how can I create an automatic text 
classification system?



Let's say I want to create a system that can tell whether a person likes or dislikes various food 
products.  We might come up with an idea of having a list of words that would provide 
evidence that a person likes the product and another list of words that provides evidence that  
the person doesn't like the product.

If we are trying to determine if a particular reviewer likes Chobani yogurt or not, we can just 
count the number of ‘like’ words and  the number of ‘dislike’ words in their text. We will 
classify the text based on which number is higher. We can do this for other classification 
tasks. For example, if we want to decide whether someone is pro-choice or pro-life, we can 
base it on the words and phrases they use. If they use the phrase 'unborn child' then chances 
are they are pro-life; if they use fetus they are more likely to be pro-choice. It's not surprising 
that we can use the occurrence of words to classify text. 

NAIVE BAYES AND TEXT
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‘Like’ words:
delicious
tasty
good
love
smooth

‘Dislike’ words:
awful
bland
bad
hate
gritty

Rather than just using raw counts to 
classify text, let’s use the naïve Bayes!! 

hMAP = argmaxh∈H P(D | h)P(h)

Let’s dissect that formula!



We will use the naïve Bayes methods that were introduced in the previous chapter.  We start 
with a training data set and, since we are now interested in unstructured text this data set is 
called the training corpus. Each entry in the corpus we will call a document even if it is a 
140 character Twitter post. Each document is labeled with its class. So, for example, we 
might have a corpus of Twitter posts that rated movies. Each post is labeled in some way as a 
‘favorable’ review or ‘unfavorable’ and we are going to train our classifier using this corpus of 
labeled documents. The P(h) in the formula above is the probability of these labels. If we 
have 1,000 documents in our training corpus and 500 of them are favorable reviews and 500 
unfavorable then

P( favorable) = 0.5                    P(unfavorable)= 0.5

hMAP = argmaxh∈H P(D | h)P(h)
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I am going to go 
through all the hypotheses 
and pick the one with the 
maximum probability 

 The probability of that 
hypotheses 

The probability of the data 
given the hypothesis ( for example, 
the probability of seeing specific 

words in the text given the text 

For each hypothesis, h, in the 
set of hypotheses, H...



Okay, back to 

Now let's examine the P(D|h) part of the formula—the probability of seeing some evidence, 
some data D given the hypothesis h. The data D we are going to use is the words in the text. 
One approach would be to start with the first sentence of a document, for example, Puts the 
Thrill back in Thriller. And compute things like the probability that a 'like' document starts 
with the word Puts; what's the probability of a 'like' document having a second word of the; 
and the probability of the third word of a like document being Thrill and so on. And then 
compute the probability of a dislike document starting with the word Puts, the probability of 
the second word of a dislike document being the  and so on.

hMAP = argmaxh∈H P(D | h)P(h)

NAIVE BAYES AND TEXT

7-7

When we start with labeled 
training data it is called ‘supervised 
learning.’ Text classification is an 
example of supervised learning.

Learning from unlabeled text is 
called unsupervised learning. One 
example of unsupervised learning is 
clustering which we will cover in the 

next chapter.

There is also semi-supervised learning where 
the system learns from both labeled and unlabeled 
data.  Often the system is bootstrapped using 
labeled data and then in subsequent learning makes 
use of unlabeled data.



Hmm. yeah. That is a huge number of probabilities which makes this approach unworkable. 
And, fortunately,  there is a better approach. We are going to simplify things a bit by treating 
the documents as bags of unordered words. Instead of asking things like What's the 
probability that the third word is thrill given it is a 'like' document we will ask What's the 
probability that the word thrill occurs in a 'like' document. Here is how we are going to 
compute those probabilities.

Training Phase
First, we are going to determine the vocabulary—the unique words—of all the documents 
(both like and dislike documents).  So, for example, even though the may occur thousands of 
times in our training corpus it only occurs once in our vocabulary. Let

 Vocabulary

denote the number of words in the vocabulary.  Next, for each word wk in the vocabulary we 
are going to compute the probability of that word occurring given each hypothesis: P(wk |hi).
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Google estimates that 
there are about 1 million 
words in the English language. 

If a Twitter message 
has about 14 words, we 
would need to compute...

1,000,000 x 1,000,000 x 1,000,000 x ,
1,000,000 x 1,000,000 x 1,000,000 x ,1,000,000 x 
1,000,000 x 1,000,000 x 1,000,000 x 1,000,000 x 

1,000,000 x 1,000,000 x 1,000,000 probabilities

That’s a huge number of 
probabilities to compute!

There must be a better approach!



We are going to compute this as follows. For each hypothesis (in this case 'like' and dislike')

1. combine the documents tagged with that hypothesis into one text file.

2. count how many word occurrences there are in the file. This time, if there are 500 
occurrences of the we are going to count it 500 times. Let’s call this n.

3. For each word in the vocabulary wk, count how many times that word occurred in the 
text. Call this nk

4. For each word in the vocabulary wk, compute

Naïve Bayes Classification Phase
Once we have completed the training phase we can classify documents using the formula that  
was already presented:

 

hMAP = argmaxh∈H P(D | h)P(h)
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P(wk | hi ) =
nk +1

n + Vocabulary

That seems 
simple enough. Let’s 
work through an 
example!



Let’s say our training corpus consisted of 500 Twitter messages with positive reviews of 
movies and 500 negative. So 

P(like)= 0.5                     P(dislike) = 0.5

After training the probabilities are as follows:

We are going to compute

P(like)× P(I | like)× P(am | like)× P(stunned | like)× ...

and

P(dislike)× P(I | dislike)× P(am | dislike)× P(stunned | dislike)× ...

and chose the hypothesis associated with the highest probability.
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word P(word|like) P(word|dislike)

am 0.007 0.009

by 0.012 0.012

good 0.002 0.0005

gravity 0.00001 0.00001

great 0.003 0.0007

hype 0.0007 0.002

I 0.01 0.01

over 0.005 0.0047

stunned 0.0009 0.002

the 0.047 0.0465

How should we classify:

I am stunned by the hype over 
gravity



So the probabilities are

like     0.000000000000000000000622

dislike  0.000000000000000000004720

The probability of dislike is larger than 
that for like so we classify the tweet as a 
dislike. 

word P(word|like) P(word|dislike)

P(like) = 0.5 P(dislike) =0.05

I 0.01 0.01

am 0.007 0.009

stunned 0.0009 0.002

by 0.012 0.012

the 0.047 0.0465

hype 0.0007 0.002

over 0.005 0.0047

gravity 0.00001 0.00001

∏ 6.22E-22 4.72E-21

NAIVE BAYES AND TEXT
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Just a reminder:

That e notation means how many places to move 
the decimal point. If the number is positive we 
move the decimal to the right, negative means 
move it to the left. So

1.23e-1  = 0.123
1.23e-2 = 0.0123
1.23e-3 = 0.00123

and so on



Here’s an illustration of the problem. Let’s say we have a 100 word document and the average  
probability of each word is 0.001 (words like tell, reported, average, morning, and am have 
a probability of around 0.001). If I multiply those probabilities in Python we get zero:

>>> 0.0001**100
0.0

However, if we add the log of the probabilities we do get a non-zero value:

>>> import math
>>> p = 0
>>> for i in range(100):
! p += math.log(0.0001)

>>> p
-921.034037197617
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wow. those are 
pretty small numbers!

Yes. If we multiply 
the word probabilities for 
even  a short document of 
100 words we are going 
to get a very, very, very 
small number.

Right. But Python 
can’t handle very small 
numbers. They’ll just end 
up being zero.

Exactly. We can fix 
this using logs. Instead of 
multiplying the proba-
bilities we will add the logs 
of the probabilities!!



Newsgroup Corpus
We will first investigate how this algorithm works by using a standard reference corpus of 
usenet newsgroup posts. The data consists of posts from 20 different newsgroups:

comp.graphics misc.forsale soc.religion.christian alt.atheism

comp.os.ms-windows-misc rec.autos talk.politics.guns sci.space

comp.sys.ibm.pc.hardware rec.motorcycles talk.politics.mideast sci.crypt

comp.sys.mac.hardware rec.sport.baseball talk.politics.misc sci.electronics

comp.windows.x rec.sport.hockey talk.religion.misc sci.med

in case you forgot ...      bn = x

The logorithm (or log) of a number (the x above) is the exponent (the n above) 
that you need to raise a base (b) to equal that number.  For example, suppose 
the base is 10, 

log10(1000) = 3   since 1000 equals 103 

The base of the Python log function is the mathematical constant e.  We don’t 
really need to know about e. What is of interest to us is:

1. logs compress the scale of a number ( with logs we can represent smaller 
numbers in Python)
for ex., 
.0000001 x .000005  = .000000000005
the logs of those numbers are:
-16.11809 + -9.90348 = -26.02157

2. instead of multiplying the probabilities we are going to add the logs of the 
probabilities (as shown above). 

NAIVE BAYES AND TEXT
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We would like to build a classifier that can correctly determine what group the post came 
from. For example, we would like to classify this post

as being from rec.motorcycles

Notice the misspellings (accesories and 
ussually). This might be challenging for 
a classifier!

The data is available  at http://qwone.com/~jason/20Newsgroups/ (we are using the 
20news=bydate dataset) . It is also available on the website for the book, http://
guidetodatamining.com. The data consists of 18,846 documents and is already sorted into 
training (60% of the data) and test sets. The training and test data are in separate directories.  
Within each directory are subdirectories representing each newsgroup. Within those are the 
separate documents representing posts to that newsgroup.
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From: essbaum@rchland.vnet.ibm.com (Alexander Essbaum)Subject: Re: Mail order response timeDisclaimer: This posting represents the poster's views, not necessarily those of IBMNntp-Posting-Host: relva.rchland.ibm.comOrganization: IBM RochesterLines: 18
> I have ordered many times from Competition > accesories and ussually get 2-3 day delivery.  
ordered 2 fork seals and 2 guide bushings from CA for my FZR.  two weeks later get 2 fork seals and 1 guide bushing.  call CA and ask for remaining *guide* bushing and order 2 *slide* bushings (explain on the phone which bushings are which; the guy seemed to understand).  two weeks later get 2 guide bushings.

*sigh*

how much you wanna bet that once i get ALL the parts and take the fork apart that some parts won't fit?



Throwing things out!
Before we start coding, let’s think about this task in more 
detail. 

For example, we would like to build a system that would classify the following post as being 
from rec.motorcycle:

NAIVE BAYES AND TEXT

7-15

Ladies and Gentlemen. On the main 

stage ...  Just based on the words in the 

text, we are going to attempt to tell 

which newsgroup the post is from

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L 
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?



Let’s consider which words might be helpful in the classification task:

If we throw out the 200 most frequent words in English our document looks like this:

I am looking at buying a Dual Sport type motorcycle. This is my first
cycle as well. I am interested in any experiences people have with
the following motorcycles, good or bad.

 Honda XR250L
 Suzuki DR350S
 Suzuki DR250ES
 Yamaha XT350

Most XXX vs. YYY articles I have seen in magazines pit the Honda XR650L 
against another cycle, and the 650 always comes out shining. Is it safe
to assume that the 250 would be of equal quality ?
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I...

am...

looking...

at...

buying...

a ....

dual...

sport ...

type...

motor-
cycle

“I’ is not helpful

not helpful

not helpful

not helpful

erm. probably helpful

not helpful

definitely helpful

definitely

probably not

definitely!!!!



Removing these words cuts down the size of our text by about half. Plus, it doesn't look like 
removing these words will have any impact on our ability to categorize texts. Indeed data 
miners have called such words words without any content, and fluff words. H.P. Luhn, in his 
seminal paper 'The automatic creation of literature abstracts' says of these words that they 
are “too common to have the type of significance being sought and would constitute 'noise' in  
the system.” That noise argument is interesting as it implies that removing these words will 
improve performance. These words that we remove are called 'stop words'. We have a list of 
such words, the 'stop word list', and remove these words from the text in a preprocessing 
step. We remove these words because 1) it cuts down on the amount of processing we need to 
do and 2) it does not negatively impact the performance of our system—as the noise 
argument suggests removing them might improve performance.

The counter argument: the hazards of stop word removal

While removing stop words may be useful in some situations, you should not just 
automatically remove them without thinking. For example, it turns out just using the most 
frequent words and throwing out the rest (the reverse technique of the above) provides 

NAIVE BAYES AND TEXT
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You whippersnapper. You shouldn’t be 
throwing away those common words!

Common Words vs. Stop Words
While it is true that common words like ‘the’ and ‘a’ may not help us in our classification task, 

other common words such as ‘work’, ‘write’, and ‘school’ may help depending on our classification 

task.  When we create a stop word list, we often omit common words that may be helpful. You can 

explore these differences by comparing stop word lists and frequent word lists found on the web.



sufficient information to identify where Arabic documents were written. (If you are curious 
about this check out the paper Linguistic Dumpster Diving: Geographical Classification of 
Arabic Text I co-wrote with some of my colleagues at New Mexico State University. It is 
available on my website http://zacharski.org).  In looking at online chats, sexual predators 
use words like I, me, and you, much  more frequently than non-predators. If your task is to 
identify sexual predators, removing frequent words would actually hurt your performance. 

  

Coding it — Python Style          
Let us first consider coding the training part of the Naïve Bayes Classifier.      
Recall that the training data is organized as follows:

20news-bydate-train
! alt.atheism
! ! text file 1 for alt.atheism
! ! text file 2
! ! …
! ! text file n
! comp.graphics
! ! text file 1 for comp.graphics
! ! ...
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Don’t blindly remove stop words. 

Think First.



So I have a directory (in this example called ‘20news-bydate-train’). Underneath this 
directory are subdirectories representing different classification categories (in this case 
alt.atheism, comp.graphics, etc). The names of these subdirectories match the 
category names. The test directory is organized in a similar way. So, in matching this 
structure, the Python code for training will need to know the training directory (for 
example, /Users/raz/Downloads/20news-bydate/20news-bydate-train/).  The 
outline for the training code is as follows.

NAIVE BAYES AND TEXT
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class BayesText
1. the init method:

a. read in the words from the stoplist

b. read the training directory to get the names of the 
subdirectories (in addition to being the names of the 
subdirectories, these are the names of the categories).

c. For each of those subdirectories, call a method “train” 
that will count the occurrences of words in all the files of 
that subdirectory.

d.  compute the probabilities using

P(wk | hi ) =
nk +1

n + Vocabulary

Yet another reminder that all the code is available at 
guidetodatamining.com



from __future__ import print_function
import os, codecs, math

class BayesText:

    def __init__(self, trainingdir, stopwordlist):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category)
        # I am going to eliminate any word in the vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)

7-20



        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        print("Computing probabilities:")
        for category in self.categories:
            print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1) 
                                             / denominator)
        print ("DONE TRAINING\n\n")
                    

    def train(self, trainingdir, category):
        """counts word occurrences for a particular category"""
        currentdir = trainingdir + category
        files = os.listdir(currentdir)
        counts = {}
        total = 0
        for file in files:
            #print(currentdir + '/' + file)
            f = codecs.open(currentdir + '/' + file, 'r', 'iso8859-1')
            for line in f:
                tokens = line.split()
                for token in tokens:
                    # get rid of punctuation and lowercase token
                    token = token.strip('\'".,?:-')
                    token = token.lower()
                    if token != '' and not token in self.stopwords:
                        self.vocabulary.setdefault(token, 0)
                        self.vocabulary[token] += 1
                        counts.setdefault(token, 0)
                        counts[token] += 1
                        total += 1
            f.close()
        return(counts, total)
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The results of the training phase are stored in a dictionary (hash table) called prob. The keys 
of the dictionary are the different classifications (comp.graphics, rec.motorcycles, 
soc.religion.christian, etc); the values are dictionaries. The keys of these subdictionaries are 
the words and the values are the probabilities of those words. Here is an example:

So, for example, the probability of the word ‘god’ occurring in a text in the rec.motorcycles 
newsgroup is 0.00013 (or one occurrence of god in every 10,000 words). The probability of 
the word ‘god’ occurring in a text in soc.religion.christian is .00424 (one occurrence in every 
250 words). 

Training also results in a list called categories, which, as you might predict, is simply a list of 
all the categories:

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc', 
'comp.sys.ibm.pc.hardware', ...]
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bT = BayesText(trainingDir, stoplistfile)
>>>bT.prob["rec.motorcycles"]["god"]
0.00013035445075435553
>>>bT.prob["soc.religion.christian"]["god"]
0.004258192391884386
>>>bT.prob["rec.motorcycles"]["the"]
0.028422937849264914
>>>bT.prob["soc.religion.christian"]["the"]
0.039953678998362795

So that is the training 
phase. Let us now turn to 
classifying a document.



 

s code it 

Can you code a method called classify that will predict the classification of a 
document? For example:

>>> bT.classify("20news-bydate-test/rec.motorcycles/104673")
'rec.motorcycles'
>>> bT.classify("20news-bydate-test/sci.med/59246")
'sci.med'
>>> bT.classify("20news-bydate-test/soc.religion.christian/21424")
'soc.religion.christian'

As you can see, the classify method takes a filename as an argument and returns a 
string denoting the classification. 

A Python file you can use as a template, bayesText-ClassifyTemplate.py, is available 
on our website.
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class BayesText:

  def __init__(self, trainingdir, stopwordlist):

    self.vocabulary = {}

    self.prob = {}

    self.totals = {}

    self.stopwords = {}

    f = open(stopwordlist)

    for line in f:

        self.stopwords[line.strip()] = 1

    f.close()

    categories = os.listdir(trainingdir)

    #filter out files that are not directories

    self.categories = [filename for filename in categories

                       if os.path.isdir(trainingdir + 

filename)]

    print("Counting ...")

    for category in self.categories:

        print('    ' + category)

        (self.prob[category],

         self.totals[category]) = self.train(trainingdir, 

category)

    # I am going to eliminate any word in the vocabulary



                    

   
Finally, let’s have a method that classifies every document in the test directory and prints out 
the percent accuracy of this method.  

s code it - one possible solution

def classify(self, filename):
  results = {}
  for category in self.categories:
     results[category] = 0
  f = codecs.open(filename, 'r', 'iso8859-1')
  for line in f:
     tokens = line.split()
     for token in tokens:
       token = token.strip('\'".,?:-').lower()
       if token in self.vocabulary:
         for category in self.categories:
            if self.prob[category][token] == 0:
               print("%s %s" % (category, token))
            results[category] += math.log(
                         self.prob[category][token])
  f.close()
  results = list(results.items())
  results.sort(key=lambda tuple: tuple[1], reverse = True)
  # for debugging I can change this to give me the entire list
  return results[0][0]
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    def testCategory(self, directory, category):
        files = os.listdir(directory)
        total = 0
        correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            if result == category:
                correct += 1
        return (correct, total)

    def test(self, testdir):
        """Test all files in the test directory--that directory is
        organized into subdirectories--each subdir is a classification
        category"""
        categories = os.listdir(testdir)
        #filter out files that are not directories
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        correct = 0
        total = 0
        for category in categories:
            (catCorrect, catTotal) = self.testCategory(
                testdir + correct += catCorrect
            total += catTotal
        print("Accuracy is  %f%%  (%i test instances)" %
              ((float(correct) / total) * 100, total))
            

  When I run this code using an empty stoplist file I get:

DONE TRAINING

Running Test ...

....................

Accuracy is  77.774827%  (7532 test instances)
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s code it 

Can you run the classifier with a few stop word lists? Does performance improve? Which is most 
accurate? (You will need to search the web to find these lists)

stop list size accuracy

0 77.774827

list 1

list 2
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77.77% accuracy is pretty good...
I wonder what the accuracy would be 
if  we used a stoplist?

Only one way to find out ...



s code it - some results

I found a 25 word stop word list at: http://nlp.stanford.edu/IR-book/html/htmledition/dropping-
common-terms-stop-words-1.html
And a 174 word one at http://www.ranks.nl/resources/stopwords.html

(these word lists are available on our website)

Here are the results:

stop list size accuracy

0 77.774827%

25 word list 78.757302%

174 word list 79.938927%

 

So in this case, it looks like having a 174 word stop word list improved performance about 2% 

over having no stop word list? Does this match your results?
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Naïve Bayes and Sentiment Analysis
The goal of sentiment analysis is to determine the writer’s attitude (or opinion).                      

One common type of sentiment analysis is to determine the polarity of a review or comment  
(positive or negative) and we can use a Naïve Bayes Classifier for this task.  We can try this 
out by using the polarity movie review dataset first presented in Pang and Lee 2004 1. Their 
dataset consists of 1,000 positive and 1,000 negative reviews.  Here are some examples:
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1 Pang, Bo and Lillian Lee. 2004. A sentimental education: Sentiment analysis using subjectivity 
summarization based on minimum cuts. Proceedings of ACL.

Katy Perry is awesome!

Katy Perry? Bland 
uninspired pop.

Lorde is 
awesome!

Okay, 
I agree. Lorde IS 

awesome!

when i first heard that romeo & juliet had been " updated " i shuddered . i thought that yet another of shakespeare's classics had been destroyed . 
fortunately , i was wrong . baz luhrman has directed an " in your face " , and visually 

the second serial-killer thriller of the month 

is just awful . oh , it starts deceptively okay , 

with a handful of intriguing characters and 

some solid location work . ...



You can download the original dataset from http://www.cs.cornell.edu/People/pabo/movie-
review-data/.   I have organized the data into 10 buckets (folds) with the following directory 
structure:

This re-organized dataset is available on our website.

s code it 

Can you modify the Naive Bayes Classifier code to do 10-fold cross validation of the classifier on 
this data set. The output should look something like:

       Classified as: 
          neg   pos   
        +-----+-----+
 neg    |   1 |   2 |
 pos    |   3 |   4 |
        +-----+-----+
12.345 percent correct
total of 2000 instances

Also compute the kappa coefficient.
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review_polarity_buckets
! txt_sentoken
! ! neg
! ! ! 0
! ! ! ! files in fold 0
! ! ! 1
! ! ! ! files in fold 1
! ! ! ...
! ! ! 9!
! ! ! ! files in fold 9
! ! pos
! ! ! 0
! ! ! ! files in fold 0
! ! ! ...
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Woman practicing Brahms

Obvious Disclaimer

You won’t become proficient in data mining by reading this book anymore than reading a book about piano playing will make you proficient at piano playing. You need to practice!

Woman practicing Naïve Bayes
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My code is on the following page!

s code it — my results

Here are the results I got:

       Classified as: 
          neg   pos   
        +-----+-----+
 neg    | 845 | 155 |
 pos    | 222 | 778 |
        +-----+-----+

81.150 percent correct
total of 2000 instances

Also compute the kappa coefficient.

κ = P(c)− P(r)
1− P(r)

= .8115 − 0.5
1− 0.5

= .3115
.5

= 0.623

 
So we have good performance of the algorithm on this data.
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Yet another reminder:

The code is available for download on the book’s 

website http://guidetodatamining.com/



from __future__ import print_function
import os, codecs, math

class BayesText:

    def __init__(self, trainingdir, stopwordlist, ignoreBucket):
        """This class implements a naive Bayes approach to text
        classification
        trainingdir is the training data. Each subdirectory of
        trainingdir is titled with the name of the classification
        category -- those subdirectories in turn contain the text
        files for that category.
        The stopwordlist is a list of words (one per line) will be
        removed before any counting takes place.
        """
        self.vocabulary = {}
        self.prob = {}
        self.totals = {}
        self.stopwords = {}
        f = open(stopwordlist)
        for line in f:
            self.stopwords[line.strip()] = 1
        f.close()
        categories = os.listdir(trainingdir)
        #filter out files that are not directories
        self.categories = [filename for filename in categories
                           if os.path.isdir(trainingdir + filename)]
        print("Counting ...")
        for category in self.categories:
            #print('    ' + category)
            (self.prob[category],
             self.totals[category]) = self.train(trainingdir, category,
                                                 ignoreBucket)
        # I am going to eliminate any word in the vocabulary
        # that doesn't occur at least 3 times
        toDelete = []
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        for word in self.vocabulary:
            if self.vocabulary[word] < 3:
                # mark word for deletion
                # can't delete now because you can't delete
                # from a list you are currently iterating over
                toDelete.append(word)
        # now delete
        for word in toDelete:
            del self.vocabulary[word]
        # now compute probabilities
        vocabLength = len(self.vocabulary)
        #print("Computing probabilities:")
        for category in self.categories:
            #print('    ' + category)
            denominator = self.totals[category] + vocabLength
            for word in self.vocabulary:
                if word in self.prob[category]:
                    count = self.prob[category][word]
                else:
                    count = 1
                self.prob[category][word] = (float(count + 1)
                                             / denominator)
        #print ("DONE TRAINING\n\n")
                    

    def train(self, trainingdir, category, bucketNumberToIgnore):
        """counts word occurrences for a particular category"""
        ignore = "%i" % bucketNumberToIgnore
        currentdir = trainingdir + category
        directories = os.listdir(currentdir)
        counts = {}
        total = 0
        for directory in directories:
            if directory != ignore:
                currentBucket = trainingdir + category + "/" +  \   
                                directory
                files = os.listdir(currentBucket)
                #print("   " + currentBucket)
                for file in files:
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                    f = codecs.open(currentBucket + '/' + file, 'r',
                                    'iso8859-1')
                    for line in f:
                        tokens = line.split()
                        for token in tokens:
                            # get rid of punctuation 
                            # and lowercase token
                            token = token.strip('\'".,?:-')
                            token = token.lower()
                            if token != '' and not token in \ 
                               self.stopwords:
                                self.vocabulary.setdefault(token, 0)
                                self.vocabulary[token] += 1
                                counts.setdefault(token, 0)
                                counts[token] += 1
                                total += 1
                    f.close()
        return(counts, total)
                    
                    
    def classify(self, filename):
        results = {}
        for category in self.categories:
            results[category] = 0
        f = codecs.open(filename, 'r', 'iso8859-1')
        for line in f:
            tokens = line.split()
            for token in tokens:
                #print(token)
                token = token.strip('\'".,?:-').lower()
                if token in self.vocabulary:
                    for category in self.categories:
                        if self.prob[category][token] == 0:
                            print("%s %s" % (category, token))
                        results[category] += math.log(
                            self.prob[category][token])
        f.close()
        results = list(results.items())
        results.sort(key=lambda tuple: tuple[1], reverse = True)
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        # for debugging I can change this to give me the entire list
        return results[0][0]

    def testCategory(self, direc, category, bucketNumber):
        results = {}
        directory = direc + ("%i/" % bucketNumber)
        #print("Testing " + directory)
        files = os.listdir(directory)
        total = 0
        correct = 0
        for file in files:
            total += 1
            result = self.classify(directory + file)
            results.setdefault(result, 0)
            results[result] += 1
            #if result == category:
            #               correct += 1
        return results

    def test(self, testdir, bucketNumber):
        """Test all files in the test directory--that directory is
        organized into subdirectories--each subdir is a classification
        category"""
        results = {}
        categories = os.listdir(testdir)
        #filter out files that are not directories
        categories = [filename for filename in categories if
                      os.path.isdir(testdir + filename)]
        correct = 0
        total = 0
        for category in categories:
            #print(".", end="")
            results[category] = self.testCategory(
                testdir + category + '/', category, bucketNumber)
        return results

def tenfold(dataPrefix, stoplist):
    results = {}
    for i in range(0,10):
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        bT = BayesText(dataPrefix, stoplist, i)
        r = bT.test(theDir, i)
        for (key, value) in r.items():
            results.setdefault(key, {})
            for (ckey, cvalue) in value.items():
                results[key].setdefault(ckey, 0)
                results[key][ckey] += cvalue
                categories = list(results.keys())
    categories.sort()
    print(   "\n       Classified as: ")
    header =    "          "
    subheader = "        +"
    for category in categories:
        header += "% 2s   " % category
        subheader += "-----+"
    print (header)
    print (subheader)
    total = 0.0
    correct = 0.0
    for category in categories:
        row = " %s    |" % category 
        for c2 in categories:
            if c2 in results[category]:
                count = results[category][c2]
            else:
                count = 0
            row += " %3i |" % count
            total += count
            if c2 == category:
                correct += count
        print(row)
    print(subheader)
    print("\n%5.3f percent correct" %((correct * 100) / total))
    print("total of %i instances" % total)

# change these to match your directory structure
theDir = "/Users/raz/Downloads/review_polarity_buckets/txt_sentoken/"
stoplistfile = "/Users/raz/Downloads/20news-bydate/stopwords25.txt"
tenfold(theDir, stoplistfile)
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sport Height Weight

basketball 72 162

gymnastics 54 66

track 63 106

basketball 78 204

plasma 
glucose

diastolic 
BP

BMI diabetes?

99 52 24.6 0

83 58 34.4 0

139 80 31.6 1

Chapter 8:  Clustering

Discovering 
Groups

In previous chapters we have been developing classification systems. In these systems we 
train a classifier on a set of labeled examples.

After we train the classifier, we can use it to label new examples. 

! This person looks like a basketball player. That one a gymnast.  
! That person is unlikely to get diabetes in 3 years. 

and so on. In other words, the classifier selects a label from a set of labels it 
acquired during the training phase—it knows the possible labels.  

 

the label (class) we are learning to predict



This task is called clustering. The system divides a set of instances into clusters or groups 
based on some measure of similarity. There are two main types of clustering algorithms. 

k-means clustering
For one type, we tell the algorithm how many clusters to make. Please cluster these 1,000 
people into 5 groups. Please classify these web pages into 15 groups. These methods go by 
the name of k-means clustering algorithms and we will discuss those a bit later in the 
chapter.

hierarchical clustering
For the other approach we don’t specify how many clusters to make. Instead the algorithm 
starts with each instance in its own cluster. At each iteration of the algorithm it combines the 
two most similar clusters into one. It repeatedly does this until there is only one cluster. This 
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But what happens if I don’t 
know the possible labels?

Suppose I want a system 
that discovers the possible groups.

For example, I have 1,000 
people, each one represented by 
20 attributes and I want a system 
to cluster the people into groups.



is called hierarchical clustering and its name makes sense. The running of  the algorithm 
results in one cluster, which consists of two sub-clusters. Each of those two sub-clusters in 
turn, consist of 2 sub-sub clusters and so on. 

CLUSTERING
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Initially, each item is in its own cluster

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

We stop when there is only one cluster!



Again, at each iteration of the algorithm we join the two closest clusters. To determine the 
‘closest clusters’ we use a distance formula.  But we have some choices in how we compute 
the distance between two clusters, which leads to different clustering methods. Consider the 
three clusters (A, B, and C) illustrated below each containing two members. Which pair of 
clusters should we join? Cluster A with B, or cluster C with B? 

Single-linkage clustering

In single-linkage clustering we define the distance between two clusters as the shortest 
distance between any member of one cluster to any member of the other.   With this 
definition, the distance between Cluster A and Cluster B is the distance between A1 and B1, 
since that is shorter than the distances between A1 and B2, A2 and B1, and A2 and B2.  With 
single-linkage clustering, Cluster A is closer to Cluster B than C is to B, so we would combine 
A and B into a new cluster.

Complete-linkage clustering

In complete-linkage clustering we define the distance between two clusters as the greatest 
distance between any member of one cluster to any member of the other. With this 
definition, the distance between Cluster A and Cluster B is the distance between A2 and B2. 
With complete-linkage clustering, Cluster C is closer to Cluster B than A is to B, so we would 
combine B and C into a new cluster.

Average-linkage clustering

In average-linkage clustering we define the distance between two clusters as the average 
distance between any member of one cluster to any member of the other. In the diagram 
above,  it appears that the average distance between Clusters C and B would be less than the 
average between A and B and we would combine B and C into a new cluster. 
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B1

B2 C1

C2



Good idea! Let’s practice by clustering dog breeds based on height and weight!

CLUSTERING
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Hey! Let’s work through 
an example of single-linkage 

clustering!

breed height 
(inches)

weight 
(pounds)

Border Collie 20 45

Boston Terrier 16 20

Brittany Spaniel 18 35

Bullmastiff 27 120

Chihuahua 8 8

German Shepherd 25 78

Golden Retriever 23 70

Great Dane 32 160

Portuguese 
Water Dog

21 50

Standard Poodle 19 65

Yorkshire Terrier 6 7

Psst! I think we are forgetting something. 

Isn’t there something we should do before 

computing distance?



d
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Normalization!

Let’s 
change those numbers to Modified 

Standard Scores

breed height weight 

Border Collie 0 -0.1455

Boston Terrier -0.7213 -0.873

Brittany Spaniel -0.3607 -0.4365

Bullmastiff 1.2623 2.03704

Chihuahua -2.1639 -1.2222

German Shepherd 0.9016 0.81481

Golden Retriever 0.541 0.58201

Great Dane 2.16393 3.20106

Portuguese 
Water Dog

0.1803 0

Standard Poodle -0.1803 0.43651

Yorkshire Terrier -2.525 -1.25132

Modified Standard Scores

Next we are going to compute the 

Euclidean distance between 
breeds!



-2.0

-1.0

0

1.0

2.0

3.0

4.0

-3.00 -2.25 -1.50 -0.75 0 0.75 1.50 2.25 3.00

Based on 
this chart, which 
two breeds do 
you think are the 
closest?

Euclidean Distances (a few of the shortest distances are highlighted):

BT BS B C GS GR GD PWD SP YT

Border Collie 1.024 0.463 2.521 2.417 1.317 0.907 3.985 0.232 0.609 2.756

Boston Terrier 0.566 3.522 1.484 2.342 1.926 4.992 1.255 1.417 1.843

Brittany Spaniel 2.959 1.967 1.777 1.360 4.428 0.695 0.891 2.312

Bullmastiff 4.729 1.274 1.624 1.472 2.307 2.155 5.015

Chihuahua 3.681 3.251 6.188 2.644 2.586 0.362

German Shphrd 0.429 2.700 1.088 1.146 4.001

Golden Retriever 3.081 0.685 0.736 3,572

Great Dane 3.766 3.625 6.466

Portuguese WD 0.566 2.980

Standard Poodle 2.889

CLUSTERING
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Great Dane

Bullmastiff

height

we
igh

t

German Shepherd
Golden Retriever

Portuguese WDBorder Collie

St. Poodle

Brittany SpanielBoston Terrier

ChihuahuaYorkshire



The algorithm.

Step 1.
Initially, each breed is in its own cluster.  We find the two closest clusters and combine them 
into one cluster.  From the table on the preceding page we see that the closest clusters are the 
Border Collie and the Portuguese Water Dog (distance of 0.232) so we combine them.

Border Collie    
                 
Portuguese WD    

Step 2.
We find the two closest clusters and combine them into one cluster. From the table on the 
preceding page we see that these are the Chihuahua and the Yorkshire Terrier (distance of 
0.362) so we combine them. 

Chihuahua        
                 
Yorkshire T.     

Border Collie    
                    
Portuguese WD    

Step 3.

We repeat the process again. This time combining the German Shepherd and the Golden 
Retriever.

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie    
                 
Portuguese WD    
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If you said Border Collie and Portuguese Water Dog, you would be correct!



Step 4.

We repeat the process yet again. From the table we see that the next closest pair is the Border  
Collie and the Brittany Spaniel. The Border Collie is already in a cluster with the Portuguese 
Water Dog which we created in Step 1. So in this step we are going to combine that cluster 
with the Brittany Spaniel.

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                        
Golden Retriever 

Border Collie    
                   
Portuguese WD        
                          
Brittany Spaniel 

And we continue:

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier   
                            
     

CLUSTERING
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This type of diagram is called a 

dendrogram. It is basically a tree 

diagram that represents clusters.



s sharpen your pencil 
 
Finish the clustering of the dog data! 
To help you in this task, there is a sorted list of dog breed distances on this chapter’s webpage (https://
raw.githubusercontent.com/zacharski/pg2dm-python/0684ec677a1a1baaecb47bc0f8f21ec121e83339/
data/ch8/dogDistanceSorted.txt).

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier   
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s sharpen your pencil  solution
 
Finish the clustering of the dog data! 
To help you in this task, there is a sorted list of dog breed distances on this chapter’s webpage 
(http://guidetodatamining.com/guide/ch8/dogDistanceSorted.txt).  

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier 

Standard Poodle

Bullmastiff

Great Dane  

CLUSTERING
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coding a hierarchical clustering algorithm
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For coding the 
clusterer we can use a 
priority queue! Can you remind 

me what a priority 
queue is?

Sure!!
In a regular queue, the order in which you put the 
items in the queue is the order you get the items out 
of the queue...

(15, Moa)(16, Suzuka)(13, Yui)

Queue
(15, Moa)(16, Suzuka)(13, Yui)

Suppose I put tuples representing a person’s age 
and name into a queue. First the tuple for Moa is put 
into the queue, then the one for Suzuka and then for 
Yui. When I get an item from the queue, I first get the 
tuple for Moa since that was the first one put in the 

queue; then the one for Suzuka and then Yui!

1st2nd3rd

1st2nd3rd



In a priority queue each item put into the queue has an associated priority. The order in 
which items are retrieved from the queue is based on this priority. Items with a higher 
priority are retrieved before items with a lower one. In our example data, suppose the 
younger a person is, the higher their priority.

Let’s see how this works in Python

>>> from queue import PriorityQueue           # load the PriorityQueue library

>>> singersQueue = PriorityQueue()            # create a PriorityQueue called

! ! ! ! !              # singersQueue

>>> singersQueue.put((16, 'Suzuka Nakamoto')) # put a few items in the queue

>>> singersQueue.put((15, 'Moa Kikuchi'))

>>> singersQueue.put((14, 'Yui Mizuno'))

CLUSTERING
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(15, Moa)(16, Suzuka)(13, Yui)

We put the tuples into the queue in the same order 

as before!

Priority Queue

(15, Moa)(16, Suzuka) (13, Yui)

The first item to be retrieved from the queue will be 

Yui because she is youngest and thus has the highest 

priority!

(16, Suzuka) (15, Moa)

(13, Yui)

Priority Queue

(16, Suzuka) (15, Moa)

(13, Yui)

1st2nd3rd



>>> singersQueue.put((17, 'Ayaka Sasaki'))

>>> singersQueue.get()                           # The first item retrieved 

(14, 'Yui Mizuno')                               # will be the youngest, Yui.

>>> singersQueue.get()

(15, 'Moa Kikuchi')

>>> singersQueue.get()

(16, 'Suzuka Nakamoto')

>>> singersQueue.get()

(17, 'Ayaka Sasaki')

For our task of building a hierarchical clusterer, we will put the clusters in a priority queue. 
The priority will be the shortest distance to a cluster’s nearest neighbor. Using our dog breed 
example, we will put the Border Collie in our queue recording that it’s nearest neighbor is the  
Portuguese Water Dog at a distance of 0.232. We put similar entries into the queue for the 
other breeds:

We will get the two entries with the shortest distance, making sure we have a matching pair. 
In this case we get the entries for Border Collie and Portuguese Water Dog. Next, we join the 
clusters into one cluster. In this case, we create a Border Collie - Portuguese Water Dog 
cluster. And put that cluster on the queue:
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Priority Queue

cluster: (Border Collie)
neighbor: Portuguese Water Dogdistance: 0.232

cluster: (Portuguese Water Dog)neighbor: Border Collie
distance: 0.232

cluster: (Chihuahua)
neighbor: Yorkshire Terrier
distance: 0.362

etc.etc.

etc.



And repeat until there is only one cluster on the queue. The entries we will put on the queue 
need to be slightly more complex than those used in this example. So let’s look at this 
example in more detail.

Reading the data from a file
The data will be in a CSV (comma separated values) file where the first column is the name of 
the instance and the rest of the columns are the values of various attributes. The first line of 
the file will be a header that describes these attributes:

The data in this file is read into a list called, not surprisingly, data.  The list data saves the 
information by column. Thus, data[0] is a list containing the breed names (data[0][0] is 
the string ‘Border Collie, data[0][1] is ‘Boston Terrier’ and so on). data[1] is a list 
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Priority Queue

cluster: (Border Collie, 
             Portuguese Water Dog)neighbor: Brittany Spaniel
distance: 0.463

etc.

cluster: (Chihuahua)
neighbor: Yorkshire Terrier
distance: 0.362

etc.
etc.

breed,height (
inches),weight

 (pounds)

Border Collie,
20,45

Boston Terrier
,16,20

Brittany Spani
el,18,35

Bullmastiff,27
,120

Chihuahua,8,8
German Shepher

d,25,78

Golden Retriev
er,23,70

Great Dane,32,
160

Portuguese Wat
er Dog,21,50

Standard Poodl
e,19,65

Yorkshire Terr
ier,6,7



containing the height values, and data[2] is the weight list. All the data except that in the 
first column is converted into floats. For example, data[1][0] is the float 20.0 and 
data[2][0] is the float 45. Once the data is read in, it is normalized. Throughout the 
description of the algorithm I will use the term index to refer to the row number of the 
instance (for example, Border Collie is index 0, Boston Terrier is index 1, and Yorkshire 
Terrier is index 10).

Initializing the Priority Queue
At the start of the algorithm, we will put in the queue, entries for each breed. Let’s consider 
the entry for the Border Collie. First, we calculate the distance of the Border Collie to all other  
breeds and put that information into a Python dictionary:

{1: ((0, 1), 1.0244),   the distance between the Border Collie (index 0) and the Boston Terrier 

                                                           (index 1), is 1.0244  

 2: ((0, 2), 0.463),    the distance between the Border Collie the Brittany Spaniel is 0.463

 ...

 10: ((0, 10), 2.756)}  the Border Collie -- Yorkshire Terrier distance is 2.756

We will also keep track of the Border Collie’s nearest neighbor and the distance to that 
nearest neighbor:

The problem of identical distances and what is with all those tuples.
You may have noticed that in the table on page 8-7, the distance between the Portuguese 
Water Dog and the Standard Poodle and the distance between the Boston Terrier and the 
Brittany Spaniel are the same—0.566. If we retrieve items from the priority queue based on 
distance there is a possibility that we will retrieve Standard Poodle and Boston Terrier and 
join them in a cluster, which would be an error. To prevent this error we will use a tuple 
containing the indices  (based on the data list) of the two breeds that the distance 
represents. For example, Portuguese Water Dog is entry 8 in our data and the Standard 
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closest distance: 0.232
nearest pair: (0, 8) 

The closest neighbor to the Border Collie 

(index 0) is the Portuguese Water Dog 

(index 8) and vice versa.



Poodle is entry 9, so the tuple will be (8,9). This tuple is added to the nearest neighbor list. 
The nearest neighbor for the poodle will be:

['Portuguese Water Dog', 0.566, (8,9)]

and the nearest neighbor for the Portuguese Water Dog will be:

['Standard Poodle', 0.566, (8,9)]

By using this tuple, when we retrieve items from the queue we can see if they are a  matching 
pair.

Another thing to consider about identical distances.
When I introduced Python Priority Queues a few pages ago, I inserted into the queue, tuples 
representing the ages and names of Japanese Idol performers. These entries were retrieved 
based on age. What happens if some of the entries have the same age (the same priority)?  
Let’s try:

>>> singersQueue.put((15,'Suzuka Nakamoto'))
>>> singersQueue.put((15,'Moa Kikuchi'))
>>> singersQueue.put((15, 'Yui Mizuno'))
>>> singersQueue.put((15, 'Avaka Sasaki'))
>>> singersQueue.put((12, 'Megumi Okada'))
>>> singersQueue.get()
(12, 'Megumi Okada')
>>> singersQueue.get()
(15, 'Avaka Sasaki')
>>> singersQueue.get()
(15, 'Moa Kikuchi')
>>> singersQueue.get()
(15, 'Suzuka Nakamoto')
>>> singersQueue.get()
(15, 'Yui Mizuno')
>>>
You can see that if the first items in the tuples match, Python uses the next item to break the 
tie. In the case of all those 15 year olds, the entries are retrieved based on the next item, the 
person’s name. And since these are strings, they are ordered alphabetically. Thus the entry 
for Avaka Sasaki is retrieved before Moa Kikuchi and Moa is retrieved before Suzuka, which 
is retrieved before Yui.

CLUSTERING
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In our case of hierarchical clustering, We use the distance between breeds as the primary 
priority. To resolve ties we will use an index number. The first element we put on the queue 
will have an index of 0, the second element an index of 1, the third , 2,  and so on. Our 
complete entry we add to the queue will be of the form:

(0.23170921460558744, 0, 
 [['Border Collie'], 
  ['Portuguese Water Dog', 0.23170921460558744, (0, 8)],
  {1: ((0, 1), 1.0244831578726061), 
   2: ((0, 2), 0.4634184292111748), 
   ... 
   9: ((0, 9), 0.6093065384986165), 
   10: ((0, 10), 2.756155583828758)}])

We initialize the priority queue by placing on the queue, an entry like this for each breed.

Repeat the following until there is only one cluster.
We get two items from the queue, merge them into one cluster and put that entry on the 
queue.  In our dog breed example, we get the entry for Border Collie and the entry for 
Portuguese Water Dog. We create the queue

['Border Collie', 'Portuguese Water Dog']

Next we compute the distance of this new cluster to all the other dog breeds except those in 
the new cluster. We do this by merging the distance dictionaries of the two initial clusters in 
the following way.  Let’s call the distance dictionary of the first item we get from the queue 
distanceDict1, the distance dictionary of the second item we get from the queue 
distanceDict2, and the distance dictionary we are constructing for the new cluster 
newDistanceDict. 
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distance to 
nearest neighbor

index number
current cluster

information about nearest 
neighbor

distances to all other breeds. 
The tuple (0, 1) indicates that 
this is the distance between 
breed 0 (Border Collie) and 
breed 1 (Boston Terrier)



key value in the Border Collie 
Distance List

value in the Portuguese Water 
Dog Distance List

value in the Distance List for the 
new cluster

0 - ((0, 8), 0.2317092146055) -

1 ((0, 1), 1.02448315787260) ((1, 8), 1.25503395239308) ((0, 1), 1.02448315787260)

2 ((0, 2), 0.46341842921117) ((2, 8), 0.69512764381676) (0, 2), 0.46341842921117)

3 ((0, 3), 2.52128307411504) ((3, 8), 2.3065500082408) ((3, 8), 2.3065500082408)

4 ((0, 4), 2.41700998092941) ((4, 8), 2.643745991701) ((0, 4), 2.41700998092941)

5 ((0, 5), 1.31725590972761) ((5, 8), 1.088215707936) ((5, 8), 1.088215707936)

6 ((0, 6), 0.90660838225252) ((6, 8), 0.684696194462) ((6, 8), 0.684696194462)

7 ((0, 7), 3.98523295438990) ((7, 8), 3.765829069545) ((7, 8), 3.765829069545)

8 ((0, 8), 0.23170921460558) - -

9 ((0, 9), 0.60930653849861) ((8, 9), 0.566225873458) ((8, 9), 0.566225873458)

10 ((0, 10), 2.7561555838287) ((8, 10), 2.980333906137) ((0, 10), 2.7561555838287)

The complete entry that will be placed on the queue as a result of merging the Border Collie 
and the Portuguese Water Dog will be

(0.4634184292111748, 11, [('Border Collie', 'Portuguese Water Dog'),  
 [2, 0.4634184292111748, (0, 2)], 
 {1: ((0, 1), 1.0244831578726061), 2: ((0, 2), 0.4634184292111748), 
  3: ((3, 8), 2.306550008240866), 4: ((0, 4), 2.4170099809294157), 
  5: ((5, 8), 1.0882157079364436), 6: ((6, 8), 0.6846961944627522), 
  7: ((7, 8), 3.7658290695451373), 9: ((8, 9), 0.5662258734585477), 
  10: ((0, 10), 2.756155583828758)}])
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Initialize newDistanceDict to an empty dictionary
for each key, value pair in distanceDict1:
  if there is an entry in distanceDict2 with that key:
     if the distance for that entry in distanceDict1 is  
        shorter than that in distanceDict2:
! !     place the distanceDict1 entry in newDistanceDict
 !     else:
           place the distanceDict1 entry in newDistanceDict



s Code It 
 
Can you implement the algorithm presented above in Python? 
To help you in this task, there is a Python file on the book’s website, hierarchicalClustererTemplate.py 
(http://guidetodatamining.com/guide/pg2dm-python/ch8/hierarchicalClustererTemplate.py) that gives 
you a starting point. You need to:

 1. Finish the init method. 
  For each entry in the data:
   1. compute the Euclidean Distance from that entry to all other entries and 
         create a Python Dictionary as described above.
   2. Find the nearest neighbor
   3. Place the info for this entry on the queue.

 2. Write a cluster method.  This method should repeatedly:
  1. retrieve the top 2 entries on the queue
  2. merge them
  3. place the new cluster on the queue
   until there is only one cluster on the queue.

                      

8-20



s Code It - solution

from queue import PriorityQueue
import math

"""
Example code for hierarchical clustering
"""

def getMedian(alist):
    """get median value of list alist"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2
    

def normalizeColumn(column):
    """Normalize column using Modified Standard Score"""
    median = getMedian(column)
    asd = sum([abs(x - median) for x in column]) / len(column)
    result = [(x - median) / asd for x in column]
    return result

class hClusterer:
    """ this clusterer assumes that the first column of the data is a label
    not used in the clustering. The other columns contain numeric data"""
    
    def __init__(self, filename):
        file = open(filename)
        self.data = {}
        self.counter = 0
        self.queue = PriorityQueue()
        lines = file.readlines()
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Remember:
This is only my solution and not 
necessarily the best solution. You 
might have come up with a better one!



        file.close()
        header = lines[0].split(',')
        self.cols = len(header)
        self.data = [[] for i in range(len(header))]
        for line in lines[1:]:
            cells = line.split(',')
            toggle = 0
            for cell in range(self.cols):
                if toggle == 0:
                   self.data[cell].append(cells[cell])
                   toggle = 1
                else:
                    self.data[cell].append(float(cells[cell]))
        # now normalize number columns (that is, skip the first column)
        for i in range(1, self.cols):
                self.data[i] = normalizeColumn(self.data[i])

        ###
        ###  I have read in the data and normalized the 
        ###  columns. Now for each element i in the data, I am going to
        ###     1. compute the Euclidean Distance from element i to all the 
        ###        other elements.  This data will be placed in neighbors,
        ###        which is a Python dictionary. Let's say i = 1, and I am 
        ###        computing the distance to the neighbor j and let's say j 
        ###        is 2. The neighbors dictionary for i will look like
        ###        {2: ((1,2), 1.23),  3: ((1, 3), 2.3)... }
        ###
        ###     2. find the closest neighbor
        ###
        ###     3. place the element on a priority queue, called simply queue,
        ###        based on the distance to the nearest neighbor (and a counter
        ###        used to break ties.

        # now push distances on queue        
        rows = len(self.data[0])              

        for i in range(rows):
            minDistance = 99999
            nearestNeighbor = 0
            neighbors = {}
            for j in range(rows):
                if i != j:
                    dist = self.distance(i, j)
                    if i < j:
                        pair = (i,j)
                    else:
                        pair = (j,i)
                    neighbors[j] = (pair, dist)
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                    if dist < minDistance:
                        minDistance = dist
                        nearestNeighbor = j
                        nearestNum = j
            # create nearest Pair
            if i < nearestNeighbor:
                nearestPair = (i, nearestNeighbor)
            else:
                nearestPair = (nearestNeighbor, i)
                
            # put instance on priority queue    
            self.queue.put((minDistance, self.counter,
                            [[self.data[0][i]], nearestPair, neighbors]))
            self.counter += 1
    

    def distance(self, i, j):
        sumSquares = 0
        for k in range(1, self.cols):
            sumSquares += (self.data[k][i] - self.data[k][j])**2
        return math.sqrt(sumSquares)
            

    def cluster(self):
         done = False
         while not done:
             topOne = self.queue.get()
             nearestPair = topOne[2][1]
             if not self.queue.empty():
                 nextOne = self.queue.get()
                 nearPair = nextOne[2][1]
                 tmp = []
                 ##
                 ##  I have just popped two elements off the queue,
                 ##  topOne and nextOne. I need to check whether nextOne
                 ##  is topOne's nearest neighbor and vice versa.
                 ##  If not, I will pop another element off the queue
                 ##  until I find topOne's nearest neighbor. That is what
                 ##  this while loop does.
                 ##

                 while nearPair != nearestPair:
                     tmp.append((nextOne[0], self.counter, nextOne[2]))
                     self.counter += 1
                     nextOne = self.queue.get()
                     nearPair = nextOne[2][1]
                 ##
                 ## this for loop pushes the elements I popped off in the
                 ## above while loop.
                 ##                 
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                 for item in tmp:
                     self.queue.put(item)
                     
                 if len(topOne[2][0]) == 1:
                    item1 = topOne[2][0][0]
                 else:
                     item1 = topOne[2][0]
                 if len(nextOne[2][0]) == 1:
                    item2 = nextOne[2][0][0]
                 else:
                     item2 = nextOne[2][0]
                 ##  curCluster is, perhaps obviously, the new cluster
                 ##  which combines cluster item1 with cluster item2.
                 curCluster = (item1, item2)

                 ## Now I am doing two things. First, finding the nearest
                 ## neighbor to this new cluster. Second, building a new
                 ## neighbors list by merging the neighbors lists of item1
                 ## and item2. If the distance between item1 and element 23
                 ## is 2 and the distance betweeen item2 and element 23 is 4
                 ## the distance between element 23 and the new cluster will
                 ## be 2 (i.e., the shortest distance).
                 ##

                 minDistance = 99999
                 nearestPair = ()
                 nearestNeighbor = ''
                 merged = {}
                 nNeighbors = nextOne[2][2]
                 for (key, value) in topOne[2][2].items():
                    if key in nNeighbors:
                        if nNeighbors[key][1] < value[1]:
                             dist =  nNeighbors[key]
                        else:
                            dist = value
                        if dist[1] < minDistance:
                             minDistance =  dist[1]
                             nearestPair = dist[0]
                             nearestNeighbor = key
                        merged[key] = dist
                    
                 if merged == {}:
                    return curCluster
                 else:
                    self.queue.put( (minDistance, self.counter,
                                     [curCluster, nearestPair, merged]))
                    self.counter += 1
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def printDendrogram(T, sep=3):
    """Print dendrogram of a binary tree.  Each tree node is represented by a
    length-2 tuple. printDendrogram is written and provided by David Eppstein
    2002. Accessed on 14 April 2014:
    http://code.activestate.com/recipes/139422-dendrogram-drawing/ """
!
    def isPair(T):
        return type(T) == tuple and len(T) == 2
    
    def maxHeight(T):
        if isPair(T):
            h = max(maxHeight(T[0]), maxHeight(T[1]))
        else:
            h = len(str(T))
        return h + sep
        
    activeLevels = {}

    def traverse(T, h, isFirst):
        if isPair(T):
            traverse(T[0], h-sep, 1)
            s = [' ']*(h-sep)
            s.append('|')
        else:
            s = list(str(T))
            s.append(' ')

        while len(s) < h:
            s.append('-')
        
        if (isFirst >= 0):
            s.append('+')
            if isFirst:
                activeLevels[h] = 1
            else:
                del activeLevels[h]
        
        A = list(activeLevels)
        A.sort()
        for L in A:
            if len(s) < L:
                while len(s) < L:
                    s.append(' ')
                s.append('|')

        print (''.join(s))    
        
        if isPair(T):

CLUSTERING

8-25



            traverse(T[1], h-sep, 0)

    traverse(T, maxHeight(T), -1)

filename = '//Users/raz/Dropbox/guide/pg2dm-python/ch8/dogs.csv'
 n
hg = hClusterer(filename)
cluster = hg.cluster()
printDendrogram(cluster)

When I run this code I get the following results:

Chihuahua -------------------------------+
                                         |--+
Yorkshire Terrier -----------------------+  |
                                            |--
Great Dane ------------------------------+  |
                                         |--+
Bullmastiff --------------------------+  |
                                      |--+
German Shepherd ----------------+     |
                                |--+  |
Golden Retriever ---------------+  |  |
                                   |--+
Standard Poodle ----------------+  |
                                |--+
Boston Terrier --------------+  |
                             |--+
Brittany Spaniel ---------+  |
                          |--+
Border Collie ---------+  |
                       |--+
Portuguese Water Dog --+

which match the results we computed by hand. That’s encouraging. 

8-26



s you try!  
 

On the book’s website, there is a file containing nutritional 
information about 77 breakfast cereals 
including

Can you perform hierarchical clustering of this data?

Which cereal is most similar to Trix?

To Muesli Raisins & Almonds?
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Breakfast Cereals

cereal name
calories per serving
protein (in grams)
fat (in grams)
sodium (in mg)
fiber (grams)
carbohydrates (grams)
sugars (grams)
potassium (mg)
vitamins (% of RDA)

This data set is from Carnegie Mellon University:  http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html



s you try - results
 

To run the clusterer on this dataset we only needed to change the filename from dogs.csv to 
cereal.csv. Here is an abbreviated version of the results:

Mueslix Crispy Blend --------------------------------------------------------------------+   
                                                                                         |--+    
Muesli Raisins & Almonds -------------------------------------------------------------+  |
                                                                                      |--+
Muesli Peaches & Pecans --------------------------------------------------------------+    
                                                                                            
...

Lucky Charms ----------+ 
                       |--+
Fruity Pebbles --+     | 
                 |--+  | 
Trix ------------+  |  | 
                    |--+ 
Cocoa Puffs -----+  |    
                 |--+    
Count Chocula ---+       
 

Trix, is most similar to Fruity Pebbles. (I recommend you confirm this by running out right now and 
buying a box of each.)  Perhaps not surprisingly, Muesli Raisins & Almonds is closest to Muesli 
Peaches & Pecans. 
                                                                 

8-28

That’s it for hierarchical clustering! That was pretty 
easy!



Introducing ...

-means clustering
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k
With k-means clustering 

we specify how many clusters to 
make. This is the ‘k’. If we want to 
make 2 groups k = 2, if we want 

to make 100, k=100.

k-means clustering is 
The Most Popular clustering 
algorithm!

K-means is cool!

The algorithm is over 50 
years old! It was first 
proposed by Dr. Stuart Lloyd of 
Bell Labs in 1957. 

Here is what you need to 
know about k-means
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Here are some instances we 
want to cluster into 3 groups (k=3). 
Suppose they are dog breeds as 
mentioned earlier and the dimensions 

are height and weight.

Because k=3, we pick 3 
random points as the initial 
centroids of each cluster (‘initial 
centroid’ means the initial center or 

mean of the cluster).

Right then. We’ve indicated 
these initial centroids as red, green, 

and blue circles.

Okay. Next, we are going to 
assign each instance to the nearest 
centroid. The points assigned to 
each centroid are a cluster. So we 
have created k initial clusters!!

Now, for each cluster, we 
compute the mean (average) point 
of that cluster. This will be our 

updated centroid.

And repeat (assign each 
instance to the centroid & 
recompute centroids) until the 
centroids don’t move much or we 
have reached some maximum number 
of iterations.



The basic k-means algorithm is:

Let’s go through an example. Consider the following points (x and y coordinates):

Say we want to cluster these into 2 groups. 

step 1 of above algorithm: select k random instances to be initial centroids.

Suppose we randomly select (1, 4) as centroid 1 and (4, 2) as centroid 2. 

step 3: assign each instance to the nearest centroid

To assign each instance to the nearest centroid we can use any of the distance measures we 
have previously discussed.   To keep things simple, for this example let’s use Manhattan 
Distance. 
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1. select k random instances to be the 
initial centroids

2. REPEAT
3. assign each instance to the nearest 

centroid. (forming k clusters)
4. update centroids by computing mean 

of each cluster
5. UNTIL centroids don’t change (much).

(1, 2)
(1, 4)
(2, 2)
(2, 3)
(4, 2)
(4, 4)
(5, 1)
(5, 3)



Based on these distances we assign the points to the following clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster. The mean x 
coordinate of cluster 1 is:

(1 + 1 + 2)  / 3 = 4/3 = 1.33 

and the mean y is

(2 + 4 + 3) / 3 = 9/3 = 3

So the new cluster 1 centroid is (1.33, 3). 

The new centroid for cluster 2 is (4, 2.4)
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point distance from centroid 1 
(1, 4)

distance from centroid 2 
(4, 2)

(1, 2) 2 3

(1,4) 0 5

(2, 2) 3 2

(2, 3) 2 3

(4, 2) 5 0

(4, 4) 3 2

(5, 1) 7 2

(5, 3) 5 2

CLUSTER 1
(1, 2)
(1, 4)
(2, 3)

CLUSTER 2
(2, 2)
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The old centroids were (1, 4) and (4, 2) and the new ones are (1.33, 3) and (4, 2.4). The 
centroids changed so we repeat.

step 3: assign each instance to the nearest centroid

Again we compute Manhattan Distance. 

and based on these distances assign the points to clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster.

Cluster 1 centroid: (1.5, 2.75)

Cluster 2 centroid: (4.5, 2.5)

point distance from centroid 1 
(1.33, 3)

distance from centroid 2 
(4, 2.4)

(1, 2) 1.33 3.4

(1, 4) 1.33 4.6

(2, 2) 1.67 2.4

(2, 3) 0.67 2.6

(4, 2) 3.67 0.4

(4, 4) 3.67 1.6

(5, 1) 5.67 2.4

(5, 3) 3.67 1.6
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CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The centroids changed so we repeat.

step 3: assign each instance to the nearest centroid

Again we compute Manhattan Distance. 

and based on these distances assign the points to clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster.

Cluster 1 centroid: (1.5, 2.75)

Cluster 2 centroid: (4.5, 2.5)

point distance from centroid 1 
(1.5, 2.75)

distance from centroid 2 
(4.5,  2.5)

(1, 2) 1.25 4.0

(1, 4) 1.75 5.0

(2, 2) 1.25 3.0

(2, 3) 0.75 3.0

(4, 2) 3.25 1.0

(4, 4) 3.75 2.0

(5, 1) 5.25 2.0

(5, 3) 3.75 1.0
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CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The updated centroids are identical to the previous ones so the algorithm converged on a 
solution and we can stop. The final clusters are
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CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)

We stop when the centroids don’t change. This is the same 
condition as saying no point are shifting from one cluster to 
another. This is what we mean when we say the algorithm 
‘converges’.

During the execution of the algorithm, the 
centroids shift from their initial position to some 
final position. The vast majority of this shift 
occurs during the first few iterations. Often, the 
centroids barely move during the final iterations. 

This means that the k-means algorithm 
produces good clusters early on and later 
iterations are likely to produce only minor 
refinements. 
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Because of this behavior of the 
algorithm, we can dramatically reduce its 
execution time by relaxing our criteria of “no 
points are shifting from one cluster to 
another” to “fewer than 1% of the points are 
shifting from one cluster to another.”
This is a common approach!

N K-means is simple!  

For you computer science geeks:

K-means is an instance of the Expectation 
Maximization  (EM) Algorithm, which is an 
iterative method that alternates between 
two phases. We start with an initial 
estimate of some parameter. In the K-
means case we start with an estimate of the 
centroids. In the expectation (E) phase, we 
use this estimate to place points into their 
expected cluster. In the Maximization (M) 
phase we use these expected values to 
adjust the estimate of the centroids. If you 
are interested in learning more about the 
EM algorithm the wikipedia page http://
en.wikipedia.org/wiki/Expectation
%E2%80%93maximization_algorithm is a 
good place to start.



Hill Climbing

I would like to briefly interrupt our 
discussion of K-means clustering to talk 
about hill climbing algorithms. Suppose our  
goal is to reach the peak of some mountain 
and we come up with the following 
algorithm:

This seems like a reasonable algorithm.

Consider using it with the mountain shown here ➯

You can see that regardless of where we are plopped 
down on the mountain, we will reach the peak if we 
follow the algorithm.

And if we think of this as a graph, we will reach the 
peak value regardless of where we start on the graph.

Now let’s consider using the algorithm with the graph on the following page
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start at some random location on the mountain.

REPEAT

   take a step in the direction that will take you higher.

UNTIL there is no direction that will take you higher.



Sometimes thing

Thus, this simple version of the hill-climbing algorithm is not guaranteed to reach the 
optimal solution.
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Here, things 
don’t work out as 
expected. If we 
start at ‘A’ on the 

graph...

We will reach the peak ‘B’ but not reach the 
highest peak ‘D’. Or, to put it another way, we reach a 

local maximum, B, but not the global maximum, D.

The k-means clustering algorithm is like this. There is no guarantee 
that it will find the optimal division of the data into clusters. Why? 

 The final clusters are heavily dependent on the selection of the 
initial centroids. 

Even so, the k-means algorithm generates decent clusters.

Because at the start of the algorithm we select an initial set of 
centroids randomly, which is much like picking a random spot like point ‘A’ 
on the graph above. Then, based on this initial set, we optimize the 
clusters finding the local optimum (similar to point ‘B’ on the graph).



SSE or Scatter
To determine the quality of a set of clusters we can use the sum of the squared error 
(SSE). This is also called scatter.  Here is how to compute it: for each point we will square 
the distance from that point to its centroid, then add all those squared distances together. 
More formally, 

Let’s dissect that. In the first summation sign we are iterating over the clusters. So initially i 
equals cluster 1, then i equals cluster 2, up to i equals cluster k. The next summation sign 
iterates over the points in that cluster—something like, for each point x in cluster i.  Dist is 
whatever distance formula we are using (for example, Manhattan, or Euclidean).  So we 
compute the distance between that point, x, and the centroid for the cluster ci, square that 
distance and add it to our total. 

Let’s say we run our k-means algorithm twice on the same data and for each run we pick a 
different set of random initial centroids. Is the set of clusters that were computed during the 
first run worse or better than the set computed during the second run? To answer that 
question we compute the SSE for both sets of clusters. The set with the smaller SSE is the 
better of the two.
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How do we know whether one set of 
clusters (division of the data into clusters) is 
better than another?

SSE = dist(ci , x)
2

x∈Ci
∑

i=1

k

∑



import math
import random 

def getMedian(alist):
    """get median of list"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2
    

def normalizeColumn(column):
    """normalize the values of a column using Modified Standard Score
    that is (each value - median) / (absolute standard deviation)"""
    median = getMedian(column)
    asd = sum([abs(x - median) for x in column]) / len(column)
    result = [(x - median) / asd for x in column]
    return result

class kClusterer:
    """ Implementation of kMeans Clustering
    This clusterer assumes that the first column of the data is a label
    not used in the clustering. The other columns contain numeric data
    """
    
    def __init__(self, filename, k):
        """ k is the number of clusters to make
        This init method:
           1. reads the data from the file named filename
           2. stores that data by column in self.data
           3. normalizes the data using Modified Standard Score
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Time to start coding!

Here’s the code for basic k-means



           4. randomly selects the initial centroids
           5. assigns points to clusters associated with those centroids
        """
        file = open(filename)
        self.data = {}
        self.k = k
        self.counter = 0
        self.iterationNumber = 0
        # used to keep track of % of points that change cluster membership
        # in an iteration
        self.pointsChanged = 0
        # Sum of Squared Error
        self.sse = 0
        #
        # read data from file
        #
        lines = file.readlines()
        file.close()
        header = lines[0].split(',')
        self.cols = len(header)
        self.data = [[] for i in range(len(header))]
        # we are storing the data by column.
        # For example, self.data[0] is the data from column 0.
        # self.data[0][10] is the column 0 value of item 10.
        for line in lines[1:]:
            cells = line.split(',')
            toggle = 0
            for cell in range(self.cols):
                if toggle == 0:
                   self.data[cell].append(cells[cell])
                   toggle = 1
                else:
                    self.data[cell].append(float(cells[cell]))
                    
        self.datasize = len(self.data[1])
        self.memberOf = [-1 for x in range(len(self.data[1]))]
        #
        # now normalize number columns
        #
        for i in range(1, self.cols):
                self.data[i] = normalizeColumn(self.data[i])

        # select random centroids from existing points
        random.seed()
        self.centroids = [[self.data[i][r]  for i in range(1, len(self.data))]
                           for r in random.sample(range(len(self.data[0])),
                                                 self.k)]
        self.assignPointsToCluster()
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    def updateCentroids(self):
        """Using the points in the clusters, determine the centroid
        (mean point) of each cluster"""
        members = [self.memberOf.count(i) in range(len(self.centroids))]
        self.centroids = [[sum([self.data[k][i]
                            for i in range(len(self.data[0]))
                            if self.memberOf[i] == centroid])/members[centroid]
                           for k in range(1, len(self.data))]
                          for centroid in range(len(self.centroids))] 
         
    
    def assignPointToCluster(self, i):
        """ assign point to cluster based on distance from centroids"""
        min = 999999
        clusterNum = -1
        for centroid in range(self.k):
            dist = self.euclideanDistance(i, centroid)
            if dist < min:
                min = dist
                clusterNum = centroid
        # here is where I will keep track of changing points
        if clusterNum != self.memberOf[i]:
            self.pointsChanged += 1
        # add square of distance to running sum of squared error
        self.sse += min**2
        return clusterNum

    def assignPointsToCluster(self):
        """ assign each data point to a cluster"""
        self.pointsChanged = 0
        self.sse = 0
        self.memberOf = [self.assignPointToCluster(i)
                         for i in range(len(self.data[1]))]
        

    def euclideanDistance(self, i, j):
        """ compute distance of point i from centroid j"""
        sumSquares = 0
        for k in range(1, self.cols):
            sumSquares += (self.data[k][i] - self.centroids[j][k-1])**2
        return math.sqrt(sumSquares)

    def kCluster(self):
        """the method that actually performs the clustering
        As you can see this method repeatedly
            updates the centroids by computing the mean point of each cluster
            re-assign the points to clusters based on these new centroids
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        until the number of points that change cluster membership 
        is less than 1%.
        """
        done = False
 
        while not done:
            self.iterationNumber += 1
            self.updateCentroids()
            self.assignPointsToCluster()
            #
            # we are done if fewer than 1% of the points change clusters
            #
            if float(self.pointsChanged) / len(self.memberOf) <  0.01:
                done = True
        print("Final SSE: %f" % self.sse)

    def showMembers(self):
        """Display the results"""
        for centroid in range(len(self.centroids)):
             print ("\n\nClass %i\n========" % centroid)
             for name in [self.data[0][i]  for i in range(len(self.data[0]))
                          if self.memberOf[i] == centroid]:
                 print (name)
        
##
## RUN THE K-MEANS CLUSTERER ON THE DOG DATA USING K = 3
###
km = kClusterer('dogs2.csv', 3)
km.kCluster()
km.showMembers()
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Let’s dissect 
that code a bit!



As with our code for the hierarchical clusterer, we are storing the data by column. Consider 
our dog breed data. If we represent the data in spreadsheet form, it would likely look like this 
(the height and weight are normalized):

And if we were to transfer this data to Python we would likely make a list that looks like the 
following:

data = [ data for the Border Collie, 
         data for the Boston Terrier,
         ... ]

So to fully specify the data format:

data = [ [‘Border Collie’,  0, -0.1455],
         [‘Boston Terrier’, -0.7213, -0.873],
         ... ]

So we are storing the data by row. This seems like the common sense approach and the one 
we have been using throughout the book. Alternatively, we can store the data column first:

breed height weight 

Border Collie 0 -0.1455

Boston Terrier -0.7213 -0.873

Brittany Spaniel -0.3607 -0.4365

Bullmastiff 1.2623 2.03704

German Shepherd 0.9016 0.81481

... ... ...

8-44



data = [ column 1 data, 
         column 2 data,
         column 3 data ]

So for our dog example:

data = [ [‘Border Collie’, ‘Boston Terrier’, ‘Brittany Spaniel’, ...],
         [ 0, -0.7213, -0.3607, ...],
         [-0.1455, -0.7213, -0.4365, ...],
         ... ]

This is what we did for the hierarchical clusterer and what we are doing here for k-means.  
The benefit of this approach is that it makes implementing many of the math functions 
easier.  We can see this in the first two procedures in the code above, getMedian and 
normalizeColumn. Because we stored the data by column, these procedures take simple 
lists as arguments. 

>>> normalizeColumn([8, 6, 4, 2])
[1.5, 0.5, -0.5, -1.5]

The constructor method, __init__ takes as arguments, the filename of the data file and k, 
the number of clusters to construct.  It reads the data from the file and stores the data by 
column. It normalizes the data using the normalizeColumn procedure, which implements 
the Modified Standard Score method. Finally, it selects k elements from this data as the 
initial centroids and assigns each point to a cluster depending on that point’s distance to the 
initial centroids.  It does this assignment using the method assignPointsToCluster.
The method, kCluster actually performs the clustering by repeatedly calling updateCentroids,  
which computes the mean of each cluster and assignPointsToCluster until fewer than 1%  
of the points change clusters.  The method showMembers simply displays the results.
Running the code on the dog breed data yields the following results:

Final SSE: 5.243159

Class 0
========
Bullmastiff
Great Dane
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Class 1
========
Boston Terrier
Chihuahua
Yorkshire Terrier

Class 2
========
Border Collie
Brittany Spaniel
German Shepherd
Golden Retriever
Portuguese Water Dog
Standard Poodle

Wow! For this small dataset the clusterer does extremely well.  

s You try 
 
How well does the kmeans clusterer work with the cereal dataset with k = 4

• Do the sweet cereals cluster together (Cap’n’Crunch, Cocoa Puffs, Froot Loops, Lucky Charms?
• Do the bran cereals cluster together (100% Bran, All-Bran, All-Bran with Extra Fiber, Bran Chex?
• What does Cheerios cluster with? 

Try the clusterer with the auto mpg dataset with different values for k=8?
Does this follow your expectations of how these cars should be grouped?
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s You try - my results
 
How well does the kmeans clusterer work with the cereal dataset with k = 4. 

Your results may vary from mine but here is what I found out.

• Do the sweet cereals cluster together (Cap’n’Crunch, Cocoa Puffs, Froot Loops, Lucky Charms?
Yes, all these sweet cereals (plus Count Chocula, Fruity Pebbles, and others) are in the same sweet 
cluster.

• Do the bran cereals cluster together (100% Bran, All-Bran, All-Bran with Extra Fiber, Bran Chex?
Again, yes! Included in this cluster are also Raisin Bran and Fruitful Bran.

• What does Cheerios cluster with? 
Cheerios always seems to be in the same cluster as Special K

Try the clusterer with the auto mpg dataset with different values for k=8?
Does this follow your expectations of how these cars should be grouped?
The clusterer seems to do a reasonable job on this dataset but on rare occasions you will notice one or 
more of the clusters are empty.
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OMG! I told the 
clusterer to make 8 groups 
but 1 of them is empty. 
There must be something 
wrong with the code!
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Consider clustering 
these points with k = 3.  
We randomly pick points 1, 
7 & 8 as the initial 
centroids.1

1 2

3

5 6 7

8

1. This example from Tolga Can http://www.ceng.metu.edu.tr/~tcan/
ceng465_f1314/Schedule/KMeansEmpty.html

Here we assign the points to clusters. Point 
6 is closer to point 7 than it is to point 1 so we 

assign it to the pink cluster.1

4

1 2

3

5 6 7

84

1 2

3

5 6 7

84

Next we update the centroids    
(shown by the ‘+’)

Nothing wrong with 
the code. Let’s look at an 
example to see how this 

happens.

1. For those of you who are 
not looking at this in color, 
the pink cluster now contains 
points 6 and 7.



In sum, just because we specify how many groups to make does not mean that the k-means 
clusterer will produce that many non-empty groups. This may be a good thing. Just looking 
at the data above, it appears to be naturally clustered into two groups and our attempt to 
cluster the data into three failed. Suppose we have 1,000 instances we would like to cluster 
into 10 groups and when we run the clusterer two of the groups are empty. This result may 
indicate something about the underlying structure of the data. Perhaps the data does not 
naturally divide into ten groups and we can explore other groupings (trying to cluster into 
eight groups, for example).   
On the other hand, sometimes when we specify 10 clusters we actually want 10 non-empty 
clusters. If that is the case, we need to alter the algorithm so it detects an empty cluster. Once 
one is detected the algorithm changes that cluster’s centroid to a different point. One 
possibility is to change it to the instance that is furthest from its corresponding centroid. (In 
the example above, once we detect the pink cluster is empty, we re-assign the pink centroid 
to point 1, since point 1 is the furthest point to its corresponding centroid. That is, I compute 
the distances from

and pick the point that is furthest from its centroid as the new centroid of the empty cluster.
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1
2

3

5 6 7

84

Then we reassign points to clusters based on these new centroids. 
Point 6 is closer to the blue centroid than it is the pink one so it gets 
reassigned to blue. Point 7 is closer to the green centroid than the pink 
one so it also gets reassigned leaving the pink cluster empty.

1 to its centroid
2 to its centroid
3 to its centroid 
4 to its centroid
5 to its centroid
6 to its centroid
7 to its centroid 
8 to its centroid



k-means++
In the previous section we examined the k-means algorithm in its original form as it was 
developed in the late 50s. As we have seen, it is easy to implement and performs well. It is 
still the most widely used clustering algorithm on the planet. But it is not without its flaws. A 
major weakness in k-means is in the first step where it randomly picks k of the datapoints 
to be the initial centroids. As you can probably tell by my bolding and embiggening the word 
‘random’, it is the random part that is the problem. Because it is random, sometimes the 
initial centroids are a great pick and lead to near optimal clustering. Other times the initial 
centroids are a reasonable pick and lead to good clustering. But sometimes—again, because 
we pick randomly—sometimes the initial centroids are poor leading to non-optimal 
clustering. The k-means++ algorithm fixes this defect by changing the way we pick the initial 
centroids. Everything else about k-means remains the same.
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(sigh) Wouldn’t it be dreamy if 
we could make k-means faster and more 
accurate.

With a simple change to k-means 
we can! The new algorithm is called

k-means++

Even the name makes it sound 
newer, better, faster, and more accurate

—a turbocharged k-means!

embiggen: verb. To make larger, to make the 
size increase.



Let’s dissect the meaning of “In a probability proportional to D(dp) select one datapoint to be  
a new centroid.” To do this, I will present a simple example. Suppose we are in the middle of 
this process. We have already selected two initial centroids and are in the process of selecting  
another one. So we are on step 3a of the above algorithm. Let’s say we have 5 remaining 
centroids and their distances to the 2 centroids (c1 and c2) are as follows:

CLUSTERING

8-51

k-means++ -- selecting the initial set of centroids

1. Initially, the set of initial centroids is empty.

2.  Select the first centroid randomly from the 
data points as before.

3. Until we have k initial centroids:

a. Compute the distance, D, between each datapoint (dp) 
and its closest centroid. This distance is D(dp).

b.  In a probability proportional to D(dp) 
select one datapoint at random to be a 
new centroid and add it to the set of 
centroids.

c. REPEAT

Dc1 Dc2

dp1 5 7

dp2 9 8

dp3 2 5

dp4 3 7

dp5 5 2

Dc1 means “distance to centroid 1 

and Dc2 means “distance to 

centroid 2.” dp1 represents 

datapoint 1.



Step 3a says we pick the closest distance so we get:

Now we are going to convert those numbers to a decimals whose 
sum equals 1 (I’ll call this the weight). To do that we sum the 
original numbers. In this case the sum equals 20. Now we divide 
each number by the sum. The result is shown here

I like to think of this as a roulette wheel that looks like 
this:

We are going to spin a ball on that wheel, 
see where it lands, and pick that as the new  
centroid. This is what we mean by “In a 
probability proportional to D(dp) select 
one datapoint to be a new centroid.”

Let us rough out this idea in Python. Say we have a list tuples containing a datapoint and its 
weight

data = [("dp1", 0.25), ("dp2", 0.4), ("dp3", 0.1), 

        ("dp4", 0.15), ("dp5", 0.1)]
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closest

dp1 5

dp2 8

dp3 2

dp4 3

dp5 2

weight

dp1 0.25

dp2 0.40

dp3 0.10

dp4 0.15

dp5 0.10

sum 1.00
dp1 dp2 dp3 dp4 dp5

25%

40%

10%

15%

10%



The function roulette will now select a datapoint in a probability proportional to its weight:

import random
random.seed()

def roulette(datalist):
! i = 0
! soFar = datalist[0][1]
! ball = random.random()
! while soFar < ball:
!    i += 1
!    soFar += datalist[i][1]
! return datalist[i][0]

If the function did pick with this proportion, we would predict that if we picked 100 times, 25  
of them would be dp1; 40 of them would be dp2; 10 of them dp3; 15 dp4; and 10, dp5. Let’s 
see if that is true:

import collections
results = collections.defaultdict(int)
for i in range(100):
! results[roulette(data)] += 1
print results

{'dp5': 11, 'dp4': 15, 'dp3': 10, 'dp2': 38, 'dp1': 26}

Great! Our function does return datapoints in roughly the correct proportion.

The idea in k-means++ clustering is that, while we still pick the initial centroids randomly, 
we prefer centroids that are far away from one another. 
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Time to do 
some coding!



s Code It 
 
Can you implement k-means++ in Python? 
Again, the only difference between our previous implementation of k-means and this code is in how we 
select the initial centroids. Make a copy of our original k-means code and modify it. Our original code 
created the initial centroids in this line:

 self.centroids = [[self.data[i][r]  for i in range(1, len(self.data))]
                    for r in random.sample(range(len(self.data[0])),
                                           self.k)]

Let us replace that line with:

  self.selectInitialCentroids()

Your job is to write that method!

Good luck!
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Throughout the book, the author has been 
putting pictures of hip people like us using 
laptops in hopes of influencing you the reader 
to put down the book and do some coding.

the book put down

a reader coding (and 
apparently enjoying it!)

If he has been successful, 
please let him know at 
ron.zacharski@gmail.com



s Code It -solution
  
Here is my version of selectInitialCentroids:

 def distanceToClosestCentroid(self, point, centroidList):
    result = self.eDistance(point, centroidList[0])
    for centroid in centroidList[1:]:
        distance = self.eDistance(point, centroid)
        if distance < result:
            result = distance
    return result

 def selectInitialCentroids(self):
    """implement the k-means++ method of selecting
    the set of initial centroids"""
    centroids = []
    total = 0
    # first step is to select a random first centroid
    current = random.choice(range(len(self.data[0])))
    centroids.append(current)
    # loop to select the rest of the centroids, one at a time
    for i in range(0, self.k - 1):
        # for every point in the data find its distance to
        # the closest centroid
        weights = [self.distanceToClosestCentroid(x, centroids) 
                   for x in range(len(self.data[0]))]
        total = sum(weights)
        # instead of raw distances, convert so sum of weight = 1
        weights = [x / total for x in weights]
        #
        # now roll virtual die
        num = random.random()
        total = 0
        x = -1
        # the roulette wheel simulation
        while total < num:
            x += 1
            total += weights[x]
        centroids.append(x)
    self.centroids = [[self.data[i][r] for i in range(1, len(self.data))]
                      for r in centroids]
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The Python code for the entire k-means++ 

classifier is on the book’s website:

http://guidetodatamining.com



Summary
Clustering is all about discovery.  However, the simple examples we have been using in this 
chapter may obscure this fundamental idea. After all, we know how to cluster breakfast 
cereals without a computer’s help—sugary cereals, healthy cereals. And we know how to 
cluster car models—a Ford F150 goes in the truck category, a Mazda Miata in the sports car 
category, and a Honda Civic in the fuel efficient category. But consider a task where discovery  
IS important.  
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When we do a web search we are 
presented with a long list of results. 
For example, when I just did a 
Google search on “carbon 
sequestration” I get over 2.8 million 
results. A number of researchers 
have examined the benefits of 
clustering these results. Instead of 
that long list of carbon sequestration  
results we might also see categories 
like  “carbon sequestration in 
freshwater wetlands” and “carbon 
sequestration in forests.”

Josh Gotbaum’s team conducted 
extensive interviews with 3,000 
people asking them questions about 
their values. Using these interviews 
they clustered the people into five 
groups. When they examined the 
clusters they gave them the 
descriptions:
1. extending opportunity to others

2. working within a community

3. achieving independence

4. focusing on family

5. defending righteousness

They then crafted targeted campaign  
ads to each group.

from The Numerati by Stephen Baker
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We just learned two 
clustering techniques, hierarchical 
clustering and k-means. When should 
we use one over the other?

Good question!
The benefits of K-means is that it is simple and 
has fast execution time. It is a great choice in 
general. It is also good choice for your first 
steps in exploring your data even if you 
eventually move to another clustering technique. 
However, it does not handle outliers well. 
Although, we can remedy this by identifying and 

removing the outliers. Got it!  What about 
hierarchical clustering?

The obvious use of hierarchical 
clustering is when we want to create a 
taxonomy or hierarchy from our data.  This 
hierarchy may be more informative about 
the data than a flat set of clusters. It is 
also not as efficient in terms of execution 
speed and memory requirements.

Brilliant!
Maybe I should practice by trying it 
out on some new data.



Enron

Perhaps you remember Enron and the Enron Scandal. In its 
heyday Enron was a mega-huge energy company with revenues over 
$100 billion and over 20,000 employees (Microsoft’s revenue then 
was only $22 billion). Due to systemic sleaziness and corruption 
including creating an artificial energy shortage that resulted in 
electricity blackouts in California, Enron went bankrupt and a bunch 
of people went to jail. For a documentary about this see Enron: The 
Smartest Guys in the Room, which is available for streaming from Netflix and Amazon 
Prime.

Now you might be thinking “Hey, this Enron stuff is sort of interesting but what does it have 
to do with data mining?”

8-58

E
EN
R
O
N

Hmm. This 
Enron stuff is sort 
of interesting but 
what does it have to 
do with data mining?

For more information on the Enron database see the Wikipedia 
entry: http://en.wikipedia.org/wiki/Enron_Corpus 
and
https://www.cs.cmu.edu/~./enron/

This database is an amazing resource for reearchers in a wide 
variety of areas. 

Well, as part of the 
investigation, the U.S. Federal 
Energy Regulatory Commision 
acquired 600,000 emails from 
Enron employees. This database 
is now available to researchers. 
It may be the largest email 
database in the world!



We are going to try to cluster a small part of the Enron corpus. For our simple test corpus, I 
have extracted the information of who sent email to whom and represented it in table form as 
shown here:

Kay Chris Sara Tana Steven Mark

Kay

Chris

Sara

Tana

Steven

Mark

0 53 37 6 0 12

53 0 1 0 2 0

37 1 0 1144 0 962

6 0 1144 0 0 1201

0 0 2 0 0 0

12 0 962 1201 0 0

In the dataset provided on our website, I’ve extracted this information for 90 individuals. 

Suppose I am interested in clustering people to discover the relationships among these 
individuals.  

s You try 
 
Can you perform hierarchical clustering on the Enron email dataset?

You can download the data from our website. (http://www.guidetodatamining.com. You may need to alter 
the code slightly to better match the problem.

Good luck!
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Link analysis

There is an entire subfield of data mining called link analysis devoted 

to this type of problem (evaluating relationships among entities) and 

there are specialized algorithms devoted to this task.



s You try - solution

In the dataset provided on our website, I’ve extracted this information for 90 individuals. 

We are clustering the people based on similarity of email correspondence. If most of my 
email correspondence is with Ann, Ben and Clara, and most of yours is with these people as 
well, that provides evidence that we are in the same group.  The idea is something like this:

between -> Ann Ben Clara Dongmei Emily Frank

my emails 127 25 119 5 1 6

your emails 172 35 123 7 3 5

Because our rows are similar, we cluster together. A problem arises when we add in our 
columns:

between -> me you Ann Ben Clara Dongmei Emily Frank

my emails 2 190 127 25 119 5 1 6

your emails 190 3 172 35 123 7 3 5

In looking at the ‘me’ column, you corresponded with me 190 times but I only sent myself 
email twice. The ‘you’ column is similar. Now when we compare our rows they don’t look so 
similar.  Before I included the ‘me’ and ‘you’ columns the Euclidean distance was 46 and after  
I included them it was 269!  To avoid this problem when I compute the Euclidean distance 
between two people I eliminate the columns for those two people. This required a slight 
change to the distance formula:

def distance(self, i, j):
    #enron specific distance formula
    sumSquares = 0
    for k in range(1, self.cols):
        if  (k != i) and (k != j) :
            sumSquares += (self.data[k][i] - self.data[k][j])**2
    return math.sqrt(sumSquares)
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Here is a subtree of the results:

I also performed k-means++ on the data, with k = 8. Here are some of the groups it 
discovered:

Class 5
========
chris.germany@enron.com
scott.neal@enron.com
marie.heard@enron.com
leslie.hansen@enron.com
mike.carson@enron.com

Class 6
========
sara.shackleton@enron.com
mark.taylor@enron.com
susan.scott@enron.com

Class 7
========
tana.jones@enron.com
louise.kitchen@enron.com
mike.grigsby@enron.com
david.forster@enron.com
m.presto@enron.com
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cara.semperger@enron.com ------------------+  
                                           |--+   
michelle.cash@enron.com ----------------+  |  
                                        |--+  
patrice.mims@enron.com -----------+     | 
                                  |--+  |  
soblander@carrfut.com ---------+  |  |  | 
                               |--+  |  | 
pete.davis@enron.com -------+  |     |  | 
                            |--+     |  |  
judy.hernandez@enron.com ---+        |  |  
                                     |--+ 
mike.carson@enron.com ------------+  |
                                  |--+ 
chris.dorland@enron.com -------+  |  
                               |--+ 
benjamin.rogers@enron.com --+  |      
                            |--+  
larry.campbell@enron.com ---+   



These results are interesting. Class 5 contains a number of traders. Chris Germany and Leslie  
Hansen are traders. Scott Neal   is a vice president of trading. Marie Heard is a lawyer.  Mike 
Carson is a manager of South East trading. The members of Class 7 are also interesting. All I 
know about Tana Jones is that she is an ‘executive’.  Louise Kitchen is President of online 
trading. Mike Grigsby was Vice President of Natural Gas. David Forster was a Vice President 
of trading. Kevin Presto (m.presto) was also a Vice President and a senior trader.
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There are many amazing hidden patterns in this 
Enron data. Can you find some? Download the complete 
data set and give it a try! 

(let me know what you find out)

And, hey, congratulations on getting to the end 
of this chapter!

Or try your hand at clustering 
other datasets. Remember, practice 
makes the heart grow fonder


