
sport Height Weight

basketball 72 162

gymnastics 54 66

track 63 106

basketball 78 204

plasma 
glucose

diastolic 
BP

BMI diabetes?

99 52 24.6 0

83 58 34.4 0

139 80 31.6 1

Chapter 8:  Clustering

Discovering 
Groups

In previous chapters we have been developing classification systems. In these systems we 
train a classifier on a set of labeled examples.

After we train the classifier, we can use it to label new examples. 

! This person looks like a basketball player. That one a gymnast.  
! That person is unlikely to get diabetes in 3 years. 

and so on. In other words, the classifier selects a label from a set of labels it 
acquired during the training phase—it knows the possible labels.  

 

the label (class) we are learning to predict



This task is called clustering. The system divides a set of instances into clusters or groups 
based on some measure of similarity. There are two main types of clustering algorithms. 

k-means clustering
For one type, we tell the algorithm how many clusters to make. Please cluster these 1,000 
people into 5 groups. Please classify these web pages into 15 groups. These methods go by 
the name of k-means clustering algorithms and we will discuss those a bit later in the 
chapter.

hierarchical clustering
For the other approach we don’t specify how many clusters to make. Instead the algorithm 
starts with each instance in its own cluster. At each iteration of the algorithm it combines the 
two most similar clusters into one. It repeatedly does this until there is only one cluster. This 
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But what happens if I don’t 
know the possible labels?

Suppose I want a system 
that discovers the possible groups.

For example, I have 1,000 
people, each one represented by 
20 attributes and I want a system 
to cluster the people into groups.



is called hierarchical clustering and its name makes sense. The running of  the algorithm 
results in one cluster, which consists of two sub-clusters. Each of those two sub-clusters in 
turn, consist of 2 sub-sub clusters and so on. 
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Initially, each item is in its own cluster

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

Then we repeat...

We join the 2 closest clusters into one cluster

We stop when there is only one cluster!



Again, at each iteration of the algorithm we join the two closest clusters. To determine the 
‘closest clusters’ we use a distance formula.  But we have some choices in how we compute 
the distance between two clusters, which leads to different clustering methods. Consider the 
three clusters (A, B, and C) illustrated below each containing two members. Which pair of 
clusters should we join? Cluster A with B, or cluster C with B? 

Single-linkage clustering

In single-linkage clustering we define the distance between two clusters as the shortest 
distance between any member of one cluster to any member of the other.   With this 
definition, the distance between Cluster A and Cluster B is the distance between A1 and B1, 
since that is shorter than the distances between A1 and B2, A2 and B1, and A2 and B2.  With 
single-linkage clustering, Cluster A is closer to Cluster B than C is to B, so we would combine 
A and B into a new cluster.

Complete-linkage clustering

In complete-linkage clustering we define the distance between two clusters as the greatest 
distance between any member of one cluster to any member of the other. With this 
definition, the distance between Cluster A and Cluster B is the distance between A2 and B2. 
With complete-linkage clustering, Cluster C is closer to Cluster B than A is to B, so we would 
combine B and C into a new cluster.

Average-linkage clustering

In average-linkage clustering we define the distance between two clusters as the average 
distance between any member of one cluster to any member of the other. In the diagram 
above,  it appears that the average distance between Clusters C and B would be less than the 
average between A and B and we would combine B and C into a new cluster. 
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A1

A2

B1

B2 C1

C2



Good idea! Let’s practice by clustering dog breeds based on height and weight!
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Hey! Let’s work through 
an example of single-linkage 

clustering!

breed height 
(inches)

weight 
(pounds)

Border Collie 20 45

Boston Terrier 16 20

Brittany Spaniel 18 35

Bullmastiff 27 120

Chihuahua 8 8

German Shepherd 25 78

Golden Retriever 23 70

Great Dane 32 160

Portuguese 
Water Dog

21 50

Standard Poodle 19 65

Yorkshire Terrier 6 7

Psst! I think we are forgetting something. 

Isn’t there something we should do before 

computing distance?



d
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Normalization!

Let’s 
change those numbers to Modified 

Standard Scores

breed height weight 

Border Collie 0 -0.1455

Boston Terrier -0.7213 -0.873

Brittany Spaniel -0.3607 -0.4365

Bullmastiff 1.2623 2.03704

Chihuahua -2.1639 -1.2222

German Shepherd 0.9016 0.81481

Golden Retriever 0.541 0.58201

Great Dane 2.16393 3.20106

Portuguese 
Water Dog

0.1803 0

Standard Poodle -0.1803 0.43651

Yorkshire Terrier -2.525 -1.25132

Modified Standard Scores

Next we are going to compute the 

Euclidean distance between 

breeds!



-2.0

-1.0

0

1.0

2.0

3.0

4.0

-3.00 -2.25 -1.50 -0.75 0 0.75 1.50 2.25 3.00

Based on 
this chart, which 
two breeds do 
you think are the 
closest?

Euclidean Distances (a few of the shortest distances are highlighted):

BT BS B C GS GR GD PWD SP YT

Border Collie 1.024 0.463 2.521 2.417 1.317 0.907 3.985 0.232 0.609 2.756

Boston Terrier 0.566 3.522 1.484 2.342 1.926 4.992 1.255 1.417 1.843

Brittany Spaniel 2.959 1.967 1.777 1.360 4.428 0.695 0.891 2.312

Bullmastiff 4.729 1.274 1.624 1.472 2.307 2.155 5.015

Chihuahua 3.681 3.251 6.188 2.644 2.586 0.362

German Shphrd 0.429 2.700 1.088 1.146 4.001

Golden Retriever 3.081 0.685 0.736 3,572

Great Dane 3.766 3.625 6.466

Portuguese WD 0.566 2.980

Standard Poodle 2.889
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Great Dane

Bullmastiff

height

w
ei

gh
t

German Shepherd

Golden Retriever

Portuguese WDBorder Collie

St. Poodle

Brittany SpanielBoston Terrier

ChihuahuaYorkshire



The algorithm.

Step 1.
Initially, each breed is in its own cluster.  We find the two closest clusters and combine them 
into one cluster.  From the table on the preceding page we see that the closest clusters are the 
Border Collie and the Portuguese Water Dog (distance of 0.232) so we combine them.

Border Collie    
                 
Portuguese WD    

Step 2.
We find the two closest clusters and combine them into one cluster. From the table on the 
preceding page we see that these are the Chihuahua and the Yorkshire Terrier (distance of 
0.362) so we combine them. 

Chihuahua        
                 
Yorkshire T.     

Border Collie    
                    
Portuguese WD    

Step 3.

We repeat the process again. This time combining the German Shepherd and the Golden 
Retriever.

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie    
                 
Portuguese WD    
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If you said Border Collie and Portuguese Water Dog, you would be correct!



Step 4.

We repeat the process yet again. From the table we see that the next closest pair is the Border  
Collie and the Brittany Spaniel. The Border Collie is already in a cluster with the Portuguese 
Water Dog which we created in Step 1. So in this step we are going to combine that cluster 
with the Brittany Spaniel.

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                        
Golden Retriever 

Border Collie    
                   
Portuguese WD        
                          
Brittany Spaniel 

And we continue:

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier   
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This type of diagram is called a 

dendrogram. It is basically a tree 

diagram that represents clusters.



s sharpen your pencil 
 
Finish the clustering of the dog data! 
To help you in this task, there is a sorted list of dog breed distances on this chapter’s webpage (https://
raw.githubusercontent.com/zacharski/pg2dm-python/0684ec677a1a1baaecb47bc0f8f21ec121e83339/
data/ch8/dogDistanceSorted.txt).

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier   
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s sharpen your pencil  solution
 
Finish the clustering of the dog data! 
To help you in this task, there is a sorted list of dog breed distances on this chapter’s webpage 
(http://guidetodatamining.com/guide/ch8/dogDistanceSorted.txt).  

Chihuahua        
                      
Yorkshire T.     

German Shphrd    
                       
Golden Retriever 

Border Collie   
                   
Portuguese WD         
                         
Brittany Spaniel     
                                
Boston Terrier 

Standard Poodle

Bullmastiff

Great Dane  

CLUSTERING
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coding a hierarchical clustering algorithm
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For coding the 
clusterer we can use a 
priority queue! Can you remind 

me what a priority 
queue is?

Sure!!
In a regular queue, the order in which you put the 
items in the queue is the order you get the items out 
of the queue...

(15, Moa)(16, Suzuka)(13, Yui)

Queue
(15, Moa)(16, Suzuka)(13, Yui)

Suppose I put tuples representing a person’s age 
and name into a queue. First the tuple for Moa is put 
into the queue, then the one for Suzuka and then for 
Yui. When I get an item from the queue, I first get the 
tuple for Moa since that was the first one put in the 

queue; then the one for Suzuka and then Yui!

1st2nd3rd

1st2nd3rd



In a priority queue each item put into the queue has an associated priority. The order in 
which items are retrieved from the queue is based on this priority. Items with a higher 
priority are retrieved before items with a lower one. In our example data, suppose the 
younger a person is, the higher their priority.

Let’s see how this works in Python

>>> from queue import PriorityQueue           # load the PriorityQueue library

>>> singersQueue = PriorityQueue()            # create a PriorityQueue called

! ! ! ! !              # singersQueue

>>> singersQueue.put((16, 'Suzuka Nakamoto')) # put a few items in the queue

>>> singersQueue.put((15, 'Moa Kikuchi'))

>>> singersQueue.put((14, 'Yui Mizuno'))

CLUSTERING
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(15, Moa)(16, Suzuka)(13, Yui)

We put the tuples into the queue in the same order 

as before!

Priority Queue

(15, Moa)(16, Suzuka) (13, Yui)

The first item to be retrieved from the queue will be 

Yui because she is youngest and thus has the highest 

priority!

(16, Suzuka) (15, Moa)

(13, Yui)

Priority Queue

(16, Suzuka) (15, Moa)

(13, Yui)

1st2nd3rd



>>> singersQueue.put((17, 'Ayaka Sasaki'))

>>> singersQueue.get()                           # The first item retrieved 

(14, 'Yui Mizuno')                               # will be the youngest, Yui.

>>> singersQueue.get()

(15, 'Moa Kikuchi')

>>> singersQueue.get()

(16, 'Suzuka Nakamoto')

>>> singersQueue.get()

(17, 'Ayaka Sasaki')

For our task of building a hierarchical clusterer, we will put the clusters in a priority queue. 
The priority will be the shortest distance to a cluster’s nearest neighbor. Using our dog breed 
example, we will put the Border Collie in our queue recording that it’s nearest neighbor is the  
Portuguese Water Dog at a distance of 0.232. We put similar entries into the queue for the 
other breeds:

We will get the two entries with the shortest distance, making sure we have a matching pair. 
In this case we get the entries for Border Collie and Portuguese Water Dog. Next, we join the 
clusters into one cluster. In this case, we create a Border Collie - Portuguese Water Dog 
cluster. And put that cluster on the queue:
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Priority Queue

cluster: (Border Collie)
neighbor: Portuguese Water Dogdistance: 0.232

cluster: (Portuguese Water Dog)neighbor: Border Collie
distance: 0.232

cluster: (Chihuahua)
neighbor: Yorkshire Terrier
distance: 0.362

etc.etc.

etc.



And repeat until there is only one cluster on the queue. The entries we will put on the queue 
need to be slightly more complex than those used in this example. So let’s look at this 
example in more detail.

Reading the data from a file
The data will be in a CSV (comma separated values) file where the first column is the name of 
the instance and the rest of the columns are the values of various attributes. The first line of 
the file will be a header that describes these attributes:

The data in this file is read into a list called, not surprisingly, data.  The list data saves the 
information by column. Thus, data[0] is a list containing the breed names (data[0][0] is 
the string ‘Border Collie, data[0][1] is ‘Boston Terrier’ and so on). data[1] is a list 
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Priority Queue

cluster: (Border Collie, 
             Portuguese Water Dog)neighbor: Brittany Spaniel
distance: 0.463

etc.

cluster: (Chihuahua)
neighbor: Yorkshire Terrier
distance: 0.362

etc.

etc.

breed,height (
inches),weight

 (pounds)

Border Collie,
20,45

Boston Terrier
,16,20

Brittany Spani
el,18,35

Bullmastiff,27
,120

Chihuahua,8,8
German Shepher

d,25,78

Golden Retriev
er,23,70

Great Dane,32,
160

Portuguese Wat
er Dog,21,50

Standard Poodl
e,19,65

Yorkshire Terr
ier,6,7



containing the height values, and data[2] is the weight list. All the data except that in the 
first column is converted into floats. For example, data[1][0] is the float 20.0 and 
data[2][0] is the float 45. Once the data is read in, it is normalized. Throughout the 
description of the algorithm I will use the term index to refer to the row number of the 
instance (for example, Border Collie is index 0, Boston Terrier is index 1, and Yorkshire 
Terrier is index 10).

Initializing the Priority Queue
At the start of the algorithm, we will put in the queue, entries for each breed. Let’s consider 
the entry for the Border Collie. First, we calculate the distance of the Border Collie to all other  
breeds and put that information into a Python dictionary:

{1: ((0, 1), 1.0244),   the distance between the Border Collie (index 0) and the Boston Terrier 

                                                           (index 1), is 1.0244  

 2: ((0, 2), 0.463),    the distance between the Border Collie the Brittany Spaniel is 0.463

 ...

 10: ((0, 10), 2.756)}  the Border Collie -- Yorkshire Terrier distance is 2.756

We will also keep track of the Border Collie’s nearest neighbor and the distance to that 
nearest neighbor:

The problem of identical distances and what is with all those tuples.
You may have noticed that in the table on page 8-7, the distance between the Portuguese 
Water Dog and the Standard Poodle and the distance between the Boston Terrier and the 
Brittany Spaniel are the same—0.566. If we retrieve items from the priority queue based on 
distance there is a possibility that we will retrieve Standard Poodle and Boston Terrier and 
join them in a cluster, which would be an error. To prevent this error we will use a tuple 
containing the indices  (based on the data list) of the two breeds that the distance 
represents. For example, Portuguese Water Dog is entry 8 in our data and the Standard 
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closest distance: 0.232
nearest pair: (0, 8) 

The closest neighbor to the Border Collie 

(index 0) is the Portuguese Water Dog 

(index 8) and vice versa.



Poodle is entry 9, so the tuple will be (8,9). This tuple is added to the nearest neighbor list. 
The nearest neighbor for the poodle will be:

['Portuguese Water Dog', 0.566, (8,9)]

and the nearest neighbor for the Portuguese Water Dog will be:

['Standard Poodle', 0.566, (8,9)]

By using this tuple, when we retrieve items from the queue we can see if they are a  matching 
pair.

Another thing to consider about identical distances.
When I introduced Python Priority Queues a few pages ago, I inserted into the queue, tuples 
representing the ages and names of Japanese Idol performers. These entries were retrieved 
based on age. What happens if some of the entries have the same age (the same priority)?  
Let’s try:

>>> singersQueue.put((15,'Suzuka Nakamoto'))
>>> singersQueue.put((15,'Moa Kikuchi'))
>>> singersQueue.put((15, 'Yui Mizuno'))
>>> singersQueue.put((15, 'Avaka Sasaki'))
>>> singersQueue.put((12, 'Megumi Okada'))
>>> singersQueue.get()
(12, 'Megumi Okada')
>>> singersQueue.get()
(15, 'Avaka Sasaki')
>>> singersQueue.get()
(15, 'Moa Kikuchi')
>>> singersQueue.get()
(15, 'Suzuka Nakamoto')
>>> singersQueue.get()
(15, 'Yui Mizuno')
>>>
You can see that if the first items in the tuples match, Python uses the next item to break the 
tie. In the case of all those 15 year olds, the entries are retrieved based on the next item, the 
person’s name. And since these are strings, they are ordered alphabetically. Thus the entry 
for Avaka Sasaki is retrieved before Moa Kikuchi and Moa is retrieved before Suzuka, which 
is retrieved before Yui.

CLUSTERING
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In our case of hierarchical clustering, We use the distance between breeds as the primary 
priority. To resolve ties we will use an index number. The first element we put on the queue 
will have an index of 0, the second element an index of 1, the third , 2,  and so on. Our 
complete entry we add to the queue will be of the form:

(0.23170921460558744, 0, 
 [['Border Collie'], 
  ['Portuguese Water Dog', 0.23170921460558744, (0, 8)],
  {1: ((0, 1), 1.0244831578726061), 
   2: ((0, 2), 0.4634184292111748), 
   ... 
   9: ((0, 9), 0.6093065384986165), 
   10: ((0, 10), 2.756155583828758)}])

We initialize the priority queue by placing on the queue, an entry like this for each breed.

Repeat the following until there is only one cluster.
We get two items from the queue, merge them into one cluster and put that entry on the 
queue.  In our dog breed example, we get the entry for Border Collie and the entry for 
Portuguese Water Dog. We create the queue

['Border Collie', 'Portuguese Water Dog']

Next we compute the distance of this new cluster to all the other dog breeds except those in 
the new cluster. We do this by merging the distance dictionaries of the two initial clusters in 
the following way.  Let’s call the distance dictionary of the first item we get from the queue 
distanceDict1, the distance dictionary of the second item we get from the queue 
distanceDict2, and the distance dictionary we are constructing for the new cluster 
newDistanceDict. 
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distance to 
nearest neighbor

index number
current cluster

information about nearest 
neighbor

distances to all other breeds. 
The tuple (0, 1) indicates that 
this is the distance between 
breed 0 (Border Collie) and 
breed 1 (Boston Terrier)



key value in the Border Collie 
Distance List

value in the Portuguese Water 
Dog Distance List

value in the Distance List for the 
new cluster

0 - ((0, 8), 0.2317092146055) -

1 ((0, 1), 1.02448315787260) ((1, 8), 1.25503395239308) ((0, 1), 1.02448315787260)

2 ((0, 2), 0.46341842921117) ((2, 8), 0.69512764381676) (0, 2), 0.46341842921117)

3 ((0, 3), 2.52128307411504) ((3, 8), 2.3065500082408) ((3, 8), 2.3065500082408)

4 ((0, 4), 2.41700998092941) ((4, 8), 2.643745991701) ((0, 4), 2.41700998092941)

5 ((0, 5), 1.31725590972761) ((5, 8), 1.088215707936) ((5, 8), 1.088215707936)

6 ((0, 6), 0.90660838225252) ((6, 8), 0.684696194462) ((6, 8), 0.684696194462)

7 ((0, 7), 3.98523295438990) ((7, 8), 3.765829069545) ((7, 8), 3.765829069545)

8 ((0, 8), 0.23170921460558) - -

9 ((0, 9), 0.60930653849861) ((8, 9), 0.566225873458) ((8, 9), 0.566225873458)

10 ((0, 10), 2.7561555838287) ((8, 10), 2.980333906137) ((0, 10), 2.7561555838287)

The complete entry that will be placed on the queue as a result of merging the Border Collie 
and the Portuguese Water Dog will be

(0.4634184292111748, 11, [('Border Collie', 'Portuguese Water Dog'),  
 [2, 0.4634184292111748, (0, 2)], 
 {1: ((0, 1), 1.0244831578726061), 2: ((0, 2), 0.4634184292111748), 
  3: ((3, 8), 2.306550008240866), 4: ((0, 4), 2.4170099809294157), 
  5: ((5, 8), 1.0882157079364436), 6: ((6, 8), 0.6846961944627522), 
  7: ((7, 8), 3.7658290695451373), 9: ((8, 9), 0.5662258734585477), 
  10: ((0, 10), 2.756155583828758)}])
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Initialize newDistanceDict to an empty dictionary
for each key, value pair in distanceDict1:
  if there is an entry in distanceDict2 with that key:
     if the distance for that entry in distanceDict1 is  
        shorter than that in distanceDict2:
! !     place the distanceDict1 entry in newDistanceDict
 !     else:
           place the distanceDict1 entry in newDistanceDict



s Code It 
 
Can you implement the algorithm presented above in Python? 
To help you in this task, there is a Python file on the book’s website, hierarchicalClustererTemplate.py 
(http://guidetodatamining.com/guide/pg2dm-python/ch8/hierarchicalClustererTemplate.py) that gives 
you a starting point. You need to:

 1. Finish the init method. 
  For each entry in the data:
   1. compute the Euclidean Distance from that entry to all other entries and 
         create a Python Dictionary as described above.
   2. Find the nearest neighbor
   3. Place the info for this entry on the queue.

 2. Write a cluster method.  This method should repeatedly:
  1. retrieve the top 2 entries on the queue
  2. merge them
  3. place the new cluster on the queue
   until there is only one cluster on the queue.
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s Code It - solution

from queue import PriorityQueue
import math

"""
Example code for hierarchical clustering
"""

def getMedian(alist):
    """get median value of list alist"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2
    

def normalizeColumn(column):
    """Normalize column using Modified Standard Score"""
    median = getMedian(column)
    asd = sum([abs(x - median) for x in column]) / len(column)
    result = [(x - median) / asd for x in column]
    return result

class hClusterer:
    """ this clusterer assumes that the first column of the data is a label
    not used in the clustering. The other columns contain numeric data"""
    
    def __init__(self, filename):
        file = open(filename)
        self.data = {}
        self.counter = 0
        self.queue = PriorityQueue()
        lines = file.readlines()
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Remember:
This is only my solution and not 
necessarily the best solution. You 
might have come up with a better one!



        file.close()
        header = lines[0].split(',')
        self.cols = len(header)
        self.data = [[] for i in range(len(header))]
        for line in lines[1:]:
            cells = line.split(',')
            toggle = 0
            for cell in range(self.cols):
                if toggle == 0:
                   self.data[cell].append(cells[cell])
                   toggle = 1
                else:
                    self.data[cell].append(float(cells[cell]))
        # now normalize number columns (that is, skip the first column)
        for i in range(1, self.cols):
                self.data[i] = normalizeColumn(self.data[i])

        ###
        ###  I have read in the data and normalized the 
        ###  columns. Now for each element i in the data, I am going to
        ###     1. compute the Euclidean Distance from element i to all the 
        ###        other elements.  This data will be placed in neighbors,
        ###        which is a Python dictionary. Let's say i = 1, and I am 
        ###        computing the distance to the neighbor j and let's say j 
        ###        is 2. The neighbors dictionary for i will look like
        ###        {2: ((1,2), 1.23),  3: ((1, 3), 2.3)... }
        ###
        ###     2. find the closest neighbor
        ###
        ###     3. place the element on a priority queue, called simply queue,
        ###        based on the distance to the nearest neighbor (and a counter
        ###        used to break ties.

        # now push distances on queue        
        rows = len(self.data[0])              

        for i in range(rows):
            minDistance = 99999
            nearestNeighbor = 0
            neighbors = {}
            for j in range(rows):
                if i != j:
                    dist = self.distance(i, j)
                    if i < j:
                        pair = (i,j)
                    else:
                        pair = (j,i)
                    neighbors[j] = (pair, dist)
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                    if dist < minDistance:
                        minDistance = dist
                        nearestNeighbor = j
                        nearestNum = j
            # create nearest Pair
            if i < nearestNeighbor:
                nearestPair = (i, nearestNeighbor)
            else:
                nearestPair = (nearestNeighbor, i)
                
            # put instance on priority queue    
            self.queue.put((minDistance, self.counter,
                            [[self.data[0][i]], nearestPair, neighbors]))
            self.counter += 1
    

    def distance(self, i, j):
        sumSquares = 0
        for k in range(1, self.cols):
            sumSquares += (self.data[k][i] - self.data[k][j])**2
        return math.sqrt(sumSquares)
            

    def cluster(self):
         done = False
         while not done:
             topOne = self.queue.get()
             nearestPair = topOne[2][1]
             if not self.queue.empty():
                 nextOne = self.queue.get()
                 nearPair = nextOne[2][1]
                 tmp = []
                 ##
                 ##  I have just popped two elements off the queue,
                 ##  topOne and nextOne. I need to check whether nextOne
                 ##  is topOne's nearest neighbor and vice versa.
                 ##  If not, I will pop another element off the queue
                 ##  until I find topOne's nearest neighbor. That is what
                 ##  this while loop does.
                 ##

                 while nearPair != nearestPair:
                     tmp.append((nextOne[0], self.counter, nextOne[2]))
                     self.counter += 1
                     nextOne = self.queue.get()
                     nearPair = nextOne[2][1]
                 ##
                 ## this for loop pushes the elements I popped off in the
                 ## above while loop.
                 ##                 
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                 for item in tmp:
                     self.queue.put(item)
                     
                 if len(topOne[2][0]) == 1:
                    item1 = topOne[2][0][0]
                 else:
                     item1 = topOne[2][0]
                 if len(nextOne[2][0]) == 1:
                    item2 = nextOne[2][0][0]
                 else:
                     item2 = nextOne[2][0]
                 ##  curCluster is, perhaps obviously, the new cluster
                 ##  which combines cluster item1 with cluster item2.
                 curCluster = (item1, item2)

                 ## Now I am doing two things. First, finding the nearest
                 ## neighbor to this new cluster. Second, building a new
                 ## neighbors list by merging the neighbors lists of item1
                 ## and item2. If the distance between item1 and element 23
                 ## is 2 and the distance betweeen item2 and element 23 is 4
                 ## the distance between element 23 and the new cluster will
                 ## be 2 (i.e., the shortest distance).
                 ##

                 minDistance = 99999
                 nearestPair = ()
                 nearestNeighbor = ''
                 merged = {}
                 nNeighbors = nextOne[2][2]
                 for (key, value) in topOne[2][2].items():
                    if key in nNeighbors:
                        if nNeighbors[key][1] < value[1]:
                             dist =  nNeighbors[key]
                        else:
                            dist = value
                        if dist[1] < minDistance:
                             minDistance =  dist[1]
                             nearestPair = dist[0]
                             nearestNeighbor = key
                        merged[key] = dist
                    
                 if merged == {}:
                    return curCluster
                 else:
                    self.queue.put( (minDistance, self.counter,
                                     [curCluster, nearestPair, merged]))
                    self.counter += 1
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def printDendrogram(T, sep=3):
    """Print dendrogram of a binary tree.  Each tree node is represented by a
    length-2 tuple. printDendrogram is written and provided by David Eppstein
    2002. Accessed on 14 April 2014:
    http://code.activestate.com/recipes/139422-dendrogram-drawing/ """
!
    def isPair(T):
        return type(T) == tuple and len(T) == 2
    
    def maxHeight(T):
        if isPair(T):
            h = max(maxHeight(T[0]), maxHeight(T[1]))
        else:
            h = len(str(T))
        return h + sep
        
    activeLevels = {}

    def traverse(T, h, isFirst):
        if isPair(T):
            traverse(T[0], h-sep, 1)
            s = [' ']*(h-sep)
            s.append('|')
        else:
            s = list(str(T))
            s.append(' ')

        while len(s) < h:
            s.append('-')
        
        if (isFirst >= 0):
            s.append('+')
            if isFirst:
                activeLevels[h] = 1
            else:
                del activeLevels[h]
        
        A = list(activeLevels)
        A.sort()
        for L in A:
            if len(s) < L:
                while len(s) < L:
                    s.append(' ')
                s.append('|')

        print (''.join(s))    
        
        if isPair(T):
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            traverse(T[1], h-sep, 0)

    traverse(T, maxHeight(T), -1)

filename = '//Users/raz/Dropbox/guide/pg2dm-python/ch8/dogs.csv'
 n
hg = hClusterer(filename)
cluster = hg.cluster()
printDendrogram(cluster)

When I run this code I get the following results:

Chihuahua -------------------------------+
                                         |--+
Yorkshire Terrier -----------------------+  |
                                            |--
Great Dane ------------------------------+  |
                                         |--+
Bullmastiff --------------------------+  |
                                      |--+
German Shepherd ----------------+     |
                                |--+  |
Golden Retriever ---------------+  |  |
                                   |--+
Standard Poodle ----------------+  |
                                |--+
Boston Terrier --------------+  |
                             |--+
Brittany Spaniel ---------+  |
                          |--+
Border Collie ---------+  |
                       |--+
Portuguese Water Dog --+

which match the results we computed by hand. That’s encouraging. 
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s you try!  
 

On the book’s website, there is a file containing nutritional 
information about 77 breakfast cereals 
including

Can you perform hierarchical clustering of this data?

Which cereal is most similar to Trix?

To Muesli Raisins & Almonds?

CLUSTERING
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Breakfast Cereals

cereal name
calories per serving
protein (in grams)
fat (in grams)
sodium (in mg)
fiber (grams)
carbohydrates (grams)
sugars (grams)
potassium (mg)
vitamins (% of RDA)

This data set is from Carnegie Mellon University:  http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html

http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html
http://lib.stat.cmu.edu/DASL/Datafiles/Cereals.html


s you try - results
 

To run the clusterer on this dataset we only needed to change the filename from dogs.csv to 
cereal.csv. Here is an abbreviated version of the results:

Mueslix Crispy Blend --------------------------------------------------------------------+   
                                                                                         |--+    
Muesli Raisins & Almonds -------------------------------------------------------------+  |
                                                                                      |--+
Muesli Peaches & Pecans --------------------------------------------------------------+    
                                                                                            
...

Lucky Charms ----------+ 
                       |--+
Fruity Pebbles --+     | 
                 |--+  | 
Trix ------------+  |  | 
                    |--+ 
Cocoa Puffs -----+  |    
                 |--+    
Count Chocula ---+       
 

Trix, is most similar to Fruity Pebbles. (I recommend you confirm this by running out right now and 
buying a box of each.)  Perhaps not surprisingly, Muesli Raisins & Almonds is closest to Muesli 
Peaches & Pecans. 
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That’s it for hierarchical clustering! That was pretty 
easy!



Introducing ...

-means clustering
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k
With k-means clustering 

we specify how many clusters to 
make. This is the ‘k’. If we want to 
make 2 groups k = 2, if we want 

to make 100, k=100.

k-means clustering is 
The Most Popular clustering 
algorithm!

K-means is cool!

The algorithm is over 50 
years old! It was first 
proposed by Dr. Stuart Lloyd of 
Bell Labs in 1957. 

Here is what you need to 
know about k-means
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Here are some instances we 
want to cluster into 3 groups (k=3). 
Suppose they are dog breeds as 
mentioned earlier and the dimensions 

are height and weight.

Because k=3, we pick 3 
random points as the initial 
centroids of each cluster (‘initial 
centroid’ means the initial center or 

mean of the cluster).

Right then. We’ve indicated 
these initial centroids as red, green, 

and blue circles.

Okay. Next, we are going to 
assign each instance to the nearest 
centroid. The points assigned to 
each centroid are a cluster. So we 
have created k initial clusters!!

Now, for each cluster, we 
compute the mean (average) point 
of that cluster. This will be our 

updated centroid.

And repeat (assign each 
instance to the centroid & 
recompute centroids) until the 
centroids don’t move much or we 
have reached some maximum number 
of iterations.



The basic k-means algorithm is:

Let’s go through an example. Consider the following points (x and y coordinates):

Say we want to cluster these into 2 groups. 

step 1 of above algorithm: select k random instances to be initial centroids.

Suppose we randomly select (1, 4) as centroid 1 and (4, 2) as centroid 2. 

step 3: assign each instance to the nearest centroid

To assign each instance to the nearest centroid we can use any of the distance measures we 
have previously discussed.   To keep things simple, for this example let’s use Manhattan 
Distance. 
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1. select k random instances to be the 
initial centroids

2. REPEAT
3. assign each instance to the nearest 

centroid. (forming k clusters)
4. update centroids by computing mean 

of each cluster
5. UNTIL centroids don’t change (much).

(1, 2)
(1, 4)
(2, 2)
(2, 3)
(4, 2)
(4, 4)
(5, 1)
(5, 3)



Based on these distances we assign the points to the following clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster. The mean x 
coordinate of cluster 1 is:

(1 + 1 + 2)  / 3 = 4/3 = 1.33 

and the mean y is

(2 + 4 + 3) / 3 = 9/3 = 3

So the new cluster 1 centroid is (1.33, 3). 

The new centroid for cluster 2 is (4, 2.4)
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point distance from centroid 1 
(1, 4)

distance from centroid 2 
(4, 2)

(1, 2) 2 3

(1,4) 0 5

(2, 2) 3 2

(2, 3) 2 3

(4, 2) 5 0

(4, 4) 3 2

(5, 1) 7 2

(5, 3) 5 2

CLUSTER 1
(1, 2)
(1, 4)
(2, 3)

CLUSTER 2
(2, 2)
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The old centroids were (1, 4) and (4, 2) and the new ones are (1.33, 3) and (4, 2.4). The 
centroids changed so we repeat.

step 3: assign each instance to the nearest centroid

Again we compute Manhattan Distance. 

and based on these distances assign the points to clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster.

Cluster 1 centroid: (1.5, 2.75)

Cluster 2 centroid: (4.5, 2.5)

point distance from centroid 1 
(1.33, 3)

distance from centroid 2 
(4, 2.4)

(1, 2) 1.33 3.4

(1, 4) 1.33 4.6

(2, 2) 1.67 2.4

(2, 3) 0.67 2.6

(4, 2) 3.67 0.4

(4, 4) 3.67 1.6

(5, 1) 5.67 2.4

(5, 3) 3.67 1.6

CLUSTERING

8-33

CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The centroids changed so we repeat.

step 3: assign each instance to the nearest centroid

Again we compute Manhattan Distance. 

and based on these distances assign the points to clusters:

step 4:  update centroids

We compute the new centroids by computing the mean of each cluster.

Cluster 1 centroid: (1.5, 2.75)

Cluster 2 centroid: (4.5, 2.5)

point distance from centroid 1 
(1.5, 2.75)

distance from centroid 2 
(4.5,  2.5)

(1, 2) 1.25 4.0

(1, 4) 1.75 5.0

(2, 2) 1.25 3.0

(2, 3) 0.75 3.0

(4, 2) 3.25 1.0

(4, 4) 3.75 2.0

(5, 1) 5.25 2.0

(5, 3) 3.75 1.0
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CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)



step 5: until centroids don’t change

The updated centroids are identical to the previous ones so the algorithm converged on a 
solution and we can stop. The final clusters are
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CLUSTER 1
(1, 2)
(1, 4)
(2, 2)
(2, 3)

CLUSTER 2
(4, 2)
(4, 4)
(5, 1)
(5, 3)

We stop when the centroids don’t change. This is the same 
condition as saying no point are shifting from one cluster to 
another. This is what we mean when we say the algorithm 
‘converges’.

During the execution of the algorithm, the 
centroids shift from their initial position to some 
final position. The vast majority of this shift 
occurs during the first few iterations. Often, the 
centroids barely move during the final iterations. 

This means that the k-means algorithm 
produces good clusters early on and later 
iterations are likely to produce only minor 
refinements. 
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Because of this behavior of the 
algorithm, we can dramatically reduce its 
execution time by relaxing our criteria of “no 
points are shifting from one cluster to 
another” to “fewer than 1% of the points are 
shifting from one cluster to another.”
This is a common approach!

N K-means is simple!  

For you computer science geeks:

K-means is an instance of the Expectation 
Maximization  (EM) Algorithm, which is an 
iterative method that alternates between 
two phases. We start with an initial 
estimate of some parameter. In the K-
means case we start with an estimate of the 
centroids. In the expectation (E) phase, we 
use this estimate to place points into their 
expected cluster. In the Maximization (M) 
phase we use these expected values to 
adjust the estimate of the centroids. If you 
are interested in learning more about the 
EM algorithm the wikipedia page http://
en.wikipedia.org/wiki/Expectation
%E2%80%93maximization_algorithm is a 
good place to start.

http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm


Hill Climbing

I would like to briefly interrupt our 
discussion of K-means clustering to talk 
about hill climbing algorithms. Suppose our  
goal is to reach the peak of some mountain 
and we come up with the following 
algorithm:

This seems like a reasonable algorithm.

Consider using it with the mountain shown here ➯

You can see that regardless of where we are plopped 
down on the mountain, we will reach the peak if we 
follow the algorithm.

And if we think of this as a graph, we will reach the 
peak value regardless of where we start on the graph.

Now let’s consider using the algorithm with the graph on the following page
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start at some random location on the mountain.

REPEAT

   take a step in the direction that will take you higher.

UNTIL there is no direction that will take you higher.



Sometimes thing

Thus, this simple version of the hill-climbing algorithm is not guaranteed to reach the 
optimal solution.
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Here, things 
don’t work out as 
expected. If we 
start at ‘A’ on the 

graph...

We will reach the peak ‘B’ but not reach the 
highest peak ‘D’. Or, to put it another way, we reach a 

local maximum, B, but not the global maximum, D.

The k-means clustering algorithm is like this. There is no guarantee 
that it will find the optimal division of the data into clusters. Why? 

 The final clusters are heavily dependent on the selection of the 
initial centroids. 

Even so, the k-means algorithm generates decent clusters.

Because at the start of the algorithm we select an initial set of 
centroids randomly, which is much like picking a random spot like point ‘A’ 
on the graph above. Then, based on this initial set, we optimize the 
clusters finding the local optimum (similar to point ‘B’ on the graph).



SSE or Scatter
To determine the quality of a set of clusters we can use the sum of the squared error 
(SSE). This is also called scatter.  Here is how to compute it: for each point we will square 
the distance from that point to its centroid, then add all those squared distances together. 
More formally, 

Let’s dissect that. In the first summation sign we are iterating over the clusters. So initially i 
equals cluster 1, then i equals cluster 2, up to i equals cluster k. The next summation sign 
iterates over the points in that cluster—something like, for each point x in cluster i.  Dist is 
whatever distance formula we are using (for example, Manhattan, or Euclidean).  So we 
compute the distance between that point, x, and the centroid for the cluster ci, square that 
distance and add it to our total. 

Let’s say we run our k-means algorithm twice on the same data and for each run we pick a 
different set of random initial centroids. Is the set of clusters that were computed during the 
first run worse or better than the set computed during the second run? To answer that 
question we compute the SSE for both sets of clusters. The set with the smaller SSE is the 
better of the two.
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How do we know whether one set of 
clusters (division of the data into clusters) is 
better than another?

SSE = dist(ci , x)
2

x∈Ci
∑

i=1

k

∑



import math
import random 

def getMedian(alist):
    """get median of list"""
    tmp = list(alist)
    tmp.sort()
    alen = len(tmp)
    if (alen % 2) == 1:
        return tmp[alen // 2]
    else:
        return (tmp[alen // 2] + tmp[(alen // 2) - 1]) / 2
    

def normalizeColumn(column):
    """normalize the values of a column using Modified Standard Score
    that is (each value - median) / (absolute standard deviation)"""
    median = getMedian(column)
    asd = sum([abs(x - median) for x in column]) / len(column)
    result = [(x - median) / asd for x in column]
    return result

class kClusterer:
    """ Implementation of kMeans Clustering
    This clusterer assumes that the first column of the data is a label
    not used in the clustering. The other columns contain numeric data
    """
    
    def __init__(self, filename, k):
        """ k is the number of clusters to make
        This init method:
           1. reads the data from the file named filename
           2. stores that data by column in self.data
           3. normalizes the data using Modified Standard Score
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Time to start coding!

Here’s the code for basic k-means



           4. randomly selects the initial centroids
           5. assigns points to clusters associated with those centroids
        """
        file = open(filename)
        self.data = {}
        self.k = k
        self.counter = 0
        self.iterationNumber = 0
        # used to keep track of % of points that change cluster membership
        # in an iteration
        self.pointsChanged = 0
        # Sum of Squared Error
        self.sse = 0
        #
        # read data from file
        #
        lines = file.readlines()
        file.close()
        header = lines[0].split(',')
        self.cols = len(header)
        self.data = [[] for i in range(len(header))]
        # we are storing the data by column.
        # For example, self.data[0] is the data from column 0.
        # self.data[0][10] is the column 0 value of item 10.
        for line in lines[1:]:
            cells = line.split(',')
            toggle = 0
            for cell in range(self.cols):
                if toggle == 0:
                   self.data[cell].append(cells[cell])
                   toggle = 1
                else:
                    self.data[cell].append(float(cells[cell]))
                    
        self.datasize = len(self.data[1])
        self.memberOf = [-1 for x in range(len(self.data[1]))]
        #
        # now normalize number columns
        #
        for i in range(1, self.cols):
                self.data[i] = normalizeColumn(self.data[i])

        # select random centroids from existing points
        random.seed()
        self.centroids = [[self.data[i][r]  for i in range(1, len(self.data))]
                           for r in random.sample(range(len(self.data[0])),
                                                 self.k)]
        self.assignPointsToCluster()
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    def updateCentroids(self):
        """Using the points in the clusters, determine the centroid
        (mean point) of each cluster"""
        members = [self.memberOf.count(i) in range(len(self.centroids))]
        self.centroids = [[sum([self.data[k][i]
                            for i in range(len(self.data[0]))
                            if self.memberOf[i] == centroid])/members[centroid]
                           for k in range(1, len(self.data))]
                          for centroid in range(len(self.centroids))] 
         
    
    def assignPointToCluster(self, i):
        """ assign point to cluster based on distance from centroids"""
        min = 999999
        clusterNum = -1
        for centroid in range(self.k):
            dist = self.euclideanDistance(i, centroid)
            if dist < min:
                min = dist
                clusterNum = centroid
        # here is where I will keep track of changing points
        if clusterNum != self.memberOf[i]:
            self.pointsChanged += 1
        # add square of distance to running sum of squared error
        self.sse += min**2
        return clusterNum

    def assignPointsToCluster(self):
        """ assign each data point to a cluster"""
        self.pointsChanged = 0
        self.sse = 0
        self.memberOf = [self.assignPointToCluster(i)
                         for i in range(len(self.data[1]))]
        

    def euclideanDistance(self, i, j):
        """ compute distance of point i from centroid j"""
        sumSquares = 0
        for k in range(1, self.cols):
            sumSquares += (self.data[k][i] - self.centroids[j][k-1])**2
        return math.sqrt(sumSquares)

    def kCluster(self):
        """the method that actually performs the clustering
        As you can see this method repeatedly
            updates the centroids by computing the mean point of each cluster
            re-assign the points to clusters based on these new centroids

8-42



        until the number of points that change cluster membership 
        is less than 1%.
        """
        done = False
 
        while not done:
            self.iterationNumber += 1
            self.updateCentroids()
            self.assignPointsToCluster()
            #
            # we are done if fewer than 1% of the points change clusters
            #
            if float(self.pointsChanged) / len(self.memberOf) <  0.01:
                done = True
        print("Final SSE: %f" % self.sse)

    def showMembers(self):
        """Display the results"""
        for centroid in range(len(self.centroids)):
             print ("\n\nClass %i\n========" % centroid)
             for name in [self.data[0][i]  for i in range(len(self.data[0]))
                          if self.memberOf[i] == centroid]:
                 print (name)
        
##
## RUN THE K-MEANS CLUSTERER ON THE DOG DATA USING K = 3
###
km = kClusterer('dogs2.csv', 3)
km.kCluster()
km.showMembers()
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Let’s dissect 
that code a bit!



As with our code for the hierarchical clusterer, we are storing the data by column. Consider 
our dog breed data. If we represent the data in spreadsheet form, it would likely look like this 
(the height and weight are normalized):

And if we were to transfer this data to Python we would likely make a list that looks like the 
following:

data = [ data for the Border Collie, 
         data for the Boston Terrier,
         ... ]

So to fully specify the data format:

data = [ [‘Border Collie’,  0, -0.1455],
         [‘Boston Terrier’, -0.7213, -0.873],
         ... ]

So we are storing the data by row. This seems like the common sense approach and the one 
we have been using throughout the book. Alternatively, we can store the data column first:

breed height weight 

Border Collie 0 -0.1455

Boston Terrier -0.7213 -0.873

Brittany Spaniel -0.3607 -0.4365

Bullmastiff 1.2623 2.03704

German Shepherd 0.9016 0.81481

... ... ...
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data = [ column 1 data, 
         column 2 data,
         column 3 data ]

So for our dog example:

data = [ [‘Border Collie’, ‘Boston Terrier’, ‘Brittany Spaniel’, ...],
         [ 0, -0.7213, -0.3607, ...],
         [-0.1455, -0.7213, -0.4365, ...],
         ... ]

This is what we did for the hierarchical clusterer and what we are doing here for k-means.  
The benefit of this approach is that it makes implementing many of the math functions 
easier.  We can see this in the first two procedures in the code above, getMedian and 
normalizeColumn. Because we stored the data by column, these procedures take simple 
lists as arguments. 

>>> normalizeColumn([8, 6, 4, 2])
[1.5, 0.5, -0.5, -1.5]

The constructor method, __init__ takes as arguments, the filename of the data file and k, 
the number of clusters to construct.  It reads the data from the file and stores the data by 
column. It normalizes the data using the normalizeColumn procedure, which implements 
the Modified Standard Score method. Finally, it selects k elements from this data as the 
initial centroids and assigns each point to a cluster depending on that point’s distance to the 
initial centroids.  It does this assignment using the method assignPointsToCluster.
The method, kCluster actually performs the clustering by repeatedly calling updateCentroids,  
which computes the mean of each cluster and assignPointsToCluster until fewer than 1%  
of the points change clusters.  The method showMembers simply displays the results.
Running the code on the dog breed data yields the following results:

Final SSE: 5.243159

Class 0
========
Bullmastiff
Great Dane
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Class 1
========
Boston Terrier
Chihuahua
Yorkshire Terrier

Class 2
========
Border Collie
Brittany Spaniel
German Shepherd
Golden Retriever
Portuguese Water Dog
Standard Poodle

Wow! For this small dataset the clusterer does extremely well.  

s You try 
 
How well does the kmeans clusterer work with the cereal dataset with k = 4

• Do the sweet cereals cluster together (Cap’n’Crunch, Cocoa Puffs, Froot Loops, Lucky Charms?
• Do the bran cereals cluster together (100% Bran, All-Bran, All-Bran with Extra Fiber, Bran Chex?
• What does Cheerios cluster with? 

Try the clusterer with the auto mpg dataset with different values for k=8?
Does this follow your expectations of how these cars should be grouped?
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s You try - my results
 
How well does the kmeans clusterer work with the cereal dataset with k = 4. 

Your results may vary from mine but here is what I found out.

• Do the sweet cereals cluster together (Cap’n’Crunch, Cocoa Puffs, Froot Loops, Lucky Charms?
Yes, all these sweet cereals (plus Count Chocula, Fruity Pebbles, and others) are in the same sweet 
cluster.

• Do the bran cereals cluster together (100% Bran, All-Bran, All-Bran with Extra Fiber, Bran Chex?
Again, yes! Included in this cluster are also Raisin Bran and Fruitful Bran.

• What does Cheerios cluster with? 
Cheerios always seems to be in the same cluster as Special K

Try the clusterer with the auto mpg dataset with different values for k=8?
Does this follow your expectations of how these cars should be grouped?
The clusterer seems to do a reasonable job on this dataset but on rare occasions you will notice one or 
more of the clusters are empty.
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OMG! I told the 
clusterer to make 8 groups 
but 1 of them is empty. 
There must be something 
wrong with the code!
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Consider clustering 
these points with k = 3.  
We randomly pick points 1, 
7 & 8 as the initial 
centroids.1

1 2

3

5 6 7

8

1. This example from Tolga Can http://www.ceng.metu.edu.tr/~tcan/
ceng465_f1314/Schedule/KMeansEmpty.html

Here we assign the points to clusters. Point 
6 is closer to point 7 than it is to point 1 so we 

assign it to the pink cluster.1

4

1 2

3

5 6 7

84

1 2

3

5 6 7

84

Next we update the centroids    
(shown by the ‘+’)

Nothing wrong with 
the code. Let’s look at an 
example to see how this 

happens.

1. For those of you who are 
not looking at this in color, 
the pink cluster now contains 
points 6 and 7.

http://www.ceng.metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html
http://www.ceng.metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html
http://www.ceng.metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html
http://www.ceng.metu.edu.tr/~tcan/ceng465_f1314/Schedule/KMeansEmpty.html


In sum, just because we specify how many groups to make does not mean that the k-means 
clusterer will produce that many non-empty groups. This may be a good thing. Just looking 
at the data above, it appears to be naturally clustered into two groups and our attempt to 
cluster the data into three failed. Suppose we have 1,000 instances we would like to cluster 
into 10 groups and when we run the clusterer two of the groups are empty. This result may 
indicate something about the underlying structure of the data. Perhaps the data does not 
naturally divide into ten groups and we can explore other groupings (trying to cluster into 
eight groups, for example).   
On the other hand, sometimes when we specify 10 clusters we actually want 10 non-empty 
clusters. If that is the case, we need to alter the algorithm so it detects an empty cluster. Once 
one is detected the algorithm changes that cluster’s centroid to a different point. One 
possibility is to change it to the instance that is furthest from its corresponding centroid. (In 
the example above, once we detect the pink cluster is empty, we re-assign the pink centroid 
to point 1, since point 1 is the furthest point to its corresponding centroid. That is, I compute 
the distances from

and pick the point that is furthest from its centroid as the new centroid of the empty cluster.
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1
2

3

5 6 7

84

Then we reassign points to clusters based on these new centroids. 
Point 6 is closer to the blue centroid than it is the pink one so it gets 
reassigned to blue. Point 7 is closer to the green centroid than the pink 
one so it also gets reassigned leaving the pink cluster empty.

1 to its centroid
2 to its centroid
3 to its centroid 
4 to its centroid
5 to its centroid
6 to its centroid
7 to its centroid 
8 to its centroid



k-means++
In the previous section we examined the k-means algorithm in its original form as it was 
developed in the late 50s. As we have seen, it is easy to implement and performs well. It is 
still the most widely used clustering algorithm on the planet. But it is not without its flaws. A 
major weakness in k-means is in the first step where it randomly picks k of the datapoints 
to be the initial centroids. As you can probably tell by my bolding and embiggening the word 
‘random’, it is the random part that is the problem. Because it is random, sometimes the 
initial centroids are a great pick and lead to near optimal clustering. Other times the initial 
centroids are a reasonable pick and lead to good clustering. But sometimes—again, because 
we pick randomly—sometimes the initial centroids are poor leading to non-optimal 
clustering. The k-means++ algorithm fixes this defect by changing the way we pick the initial 
centroids. Everything else about k-means remains the same.
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(sigh) Wouldn’t it be dreamy if 
we could make k-means faster and more 
accurate.

With a simple change to k-means 
we can! The new algorithm is called

k-means++

Even the name makes it sound 
newer, better, faster, and more accurate

—a turbocharged k-means!

embiggen: verb. To make larger, to make the 
size increase.



Let’s dissect the meaning of “In a probability proportional to D(dp) select one datapoint to be  
a new centroid.” To do this, I will present a simple example. Suppose we are in the middle of 
this process. We have already selected two initial centroids and are in the process of selecting  
another one. So we are on step 3a of the above algorithm. Let’s say we have 5 remaining 
centroids and their distances to the 2 centroids (c1 and c2) are as follows:
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k-means++ -- selecting the initial set of centroids

1. Initially, the set of initial centroids is empty.

2.  Select the first centroid randomly from the 
data points as before.

3. Until we have k initial centroids:

a. Compute the distance, D, between each datapoint (dp) 
and its closest centroid. This distance is D(dp).

b.  In a probability proportional to D(dp) 
select one datapoint at random to be a 
new centroid and add it to the set of 
centroids.

c. REPEAT

Dc1 Dc2

dp1 5 7

dp2 9 8

dp3 2 5

dp4 3 7

dp5 5 2

Dc1 means “distance to centroid 1 

and Dc2 means “distance to 

centroid 2.” dp1 represents 

datapoint 1.



Step 3a says we pick the closest distance so we get:

Now we are going to convert those numbers to a decimals whose 
sum equals 1 (I’ll call this the weight). To do that we sum the 
original numbers. In this case the sum equals 20. Now we divide 
each number by the sum. The result is shown here

I like to think of this as a roulette wheel that looks like 
this:

We are going to spin a ball on that wheel, 
see where it lands, and pick that as the new  
centroid. This is what we mean by “In a 
probability proportional to D(dp) select 
one datapoint to be a new centroid.”

Let us rough out this idea in Python. Say we have a list tuples containing a datapoint and its 
weight

data = [("dp1", 0.25), ("dp2", 0.4), ("dp3", 0.1), 

        ("dp4", 0.15), ("dp5", 0.1)]
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closest

dp1 5

dp2 8

dp3 2

dp4 3

dp5 2

weight

dp1 0.25

dp2 0.40

dp3 0.10

dp4 0.15

dp5 0.10

sum 1.00
dp1 dp2 dp3 dp4 dp5

25%

40%

10%

15%

10%



The function roulette will now select a datapoint in a probability proportional to its weight:

import random
random.seed()

def roulette(datalist):
! i = 0
! soFar = datalist[0][1]
! ball = random.random()
! while soFar < ball:
!    i += 1
!    soFar += datalist[i][1]
! return datalist[i][0]

If the function did pick with this proportion, we would predict that if we picked 100 times, 25  
of them would be dp1; 40 of them would be dp2; 10 of them dp3; 15 dp4; and 10, dp5. Let’s 
see if that is true:

import collections
results = collections.defaultdict(int)
for i in range(100):
! results[roulette(data)] += 1
print results

{'dp5': 11, 'dp4': 15, 'dp3': 10, 'dp2': 38, 'dp1': 26}

Great! Our function does return datapoints in roughly the correct proportion.

The idea in k-means++ clustering is that, while we still pick the initial centroids randomly, 
we prefer centroids that are far away from one another. 
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Time to do 
some coding!



s Code It 
 
Can you implement k-means++ in Python? 
Again, the only difference between our previous implementation of k-means and this code is in how we 
select the initial centroids. Make a copy of our original k-means code and modify it. Our original code 
created the initial centroids in this line:

 self.centroids = [[self.data[i][r]  for i in range(1, len(self.data))]
                    for r in random.sample(range(len(self.data[0])),
                                           self.k)]

Let us replace that line with:

  self.selectInitialCentroids()

Your job is to write that method!

Good luck!
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Throughout the book, the author has been 
putting pictures of hip people like us using 
laptops in hopes of influencing you the reader 
to put down the book and do some coding.

the book put down

a reader coding (and 
apparently enjoying it!)

If he has been successful, 
please let him know at 
ron.zacharski@gmail.com

mailto:ron.zacharski@gmail.com
mailto:ron.zacharski@gmail.com


s Code It -solution
  
Here is my version of selectInitialCentroids:

 def distanceToClosestCentroid(self, point, centroidList):
    result = self.eDistance(point, centroidList[0])
    for centroid in centroidList[1:]:
        distance = self.eDistance(point, centroid)
        if distance < result:
            result = distance
    return result

 def selectInitialCentroids(self):
    """implement the k-means++ method of selecting
    the set of initial centroids"""
    centroids = []
    total = 0
    # first step is to select a random first centroid
    current = random.choice(range(len(self.data[0])))
    centroids.append(current)
    # loop to select the rest of the centroids, one at a time
    for i in range(0, self.k - 1):
        # for every point in the data find its distance to
        # the closest centroid
        weights = [self.distanceToClosestCentroid(x, centroids) 
                   for x in range(len(self.data[0]))]
        total = sum(weights)
        # instead of raw distances, convert so sum of weight = 1
        weights = [x / total for x in weights]
        #
        # now roll virtual die
        num = random.random()
        total = 0
        x = -1
        # the roulette wheel simulation
        while total < num:
            x += 1
            total += weights[x]
        centroids.append(x)
    self.centroids = [[self.data[i][r] for i in range(1, len(self.data))]
                      for r in centroids]
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The Python code for the entire k-means++ 

classifier is on the book’s website:

http://guidetodatamining.com

http://guidetodatamining.com
http://guidetodatamining.com
http://guidetodatamining.com
http://guidetodatamining.com
http://guidetodatamining.com
http://guidetodatamining.com


Summary
Clustering is all about discovery.  However, the simple examples we have been using in this 
chapter may obscure this fundamental idea. After all, we know how to cluster breakfast 
cereals without a computer’s help—sugary cereals, healthy cereals. And we know how to 
cluster car models—a Ford F150 goes in the truck category, a Mazda Miata in the sports car 
category, and a Honda Civic in the fuel efficient category. But consider a task where discovery  
IS important.  
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When we do a web search we are 
presented with a long list of results. 
For example, when I just did a 
Google search on “carbon 
sequestration” I get over 2.8 million 
results. A number of researchers 
have examined the benefits of 
clustering these results. Instead of 
that long list of carbon sequestration  
results we might also see categories 
like  “carbon sequestration in 
freshwater wetlands” and “carbon 
sequestration in forests.”

Josh Gotbaum’s team conducted 
extensive interviews with 3,000 
people asking them questions about 
their values. Using these interviews 
they clustered the people into five 
groups. When they examined the 
clusters they gave them the 
descriptions:
1. extending opportunity to others

2. working within a community

3. achieving independence

4. focusing on family

5. defending righteousness

They then crafted targeted campaign  
ads to each group.

from The Numerati by Stephen Baker
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We just learned two 
clustering techniques, hierarchical 
clustering and k-means. When should 
we use one over the other?

Good question!
The benefits of K-means is that it is simple and 
has fast execution time. It is a great choice in 
general. It is also good choice for your first 
steps in exploring your data even if you 
eventually move to another clustering technique. 
However, it does not handle outliers well. 
Although, we can remedy this by identifying and 

removing the outliers. Got it!  What about 
hierarchical clustering?

The obvious use of hierarchical 
clustering is when we want to create a 
taxonomy or hierarchy from our data.  This 
hierarchy may be more informative about 
the data than a flat set of clusters. It is 
also not as efficient in terms of execution 
speed and memory requirements.

Brilliant!
Maybe I should practice by trying it 
out on some new data.



Enron

Perhaps you remember Enron and the Enron Scandal. In its 
heyday Enron was a mega-huge energy company with revenues over 
$100 billion and over 20,000 employees (Microsoft’s revenue then 
was only $22 billion). Due to systemic sleaziness and corruption 
including creating an artificial energy shortage that resulted in 
electricity blackouts in California, Enron went bankrupt and a bunch 
of people went to jail. For a documentary about this see Enron: The 
Smartest Guys in the Room, which is available for streaming from Netflix and Amazon 
Prime.

Now you might be thinking “Hey, this Enron stuff is sort of interesting but what does it have 
to do with data mining?”
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Hmm. This 
Enron stuff is sort 
of interesting but 
what does it have to 
do with data mining?

For more information on the Enron database see the Wikipedia 
entry: http://en.wikipedia.org/wiki/Enron_Corpus 
and
https://www.cs.cmu.edu/~./enron/

This database is an amazing resource for reearchers in a wide 
variety of areas. 

Well, as part of the 
investigation, the U.S. Federal 
Energy Regulatory Commision 
acquired 600,000 emails from 
Enron employees. This database 
is now available to researchers. 
It may be the largest email 
database in the world!

http://en.wikipedia.org/wiki/Enron_Corpus
http://en.wikipedia.org/wiki/Enron_Corpus
https://www.cs.cmu.edu/~./enron/
https://www.cs.cmu.edu/~./enron/


We are going to try to cluster a small part of the Enron corpus. For our simple test corpus, I 
have extracted the information of who sent email to whom and represented it in table form as 
shown here:

Kay Chris Sara Tana Steven Mark

Kay

Chris

Sara

Tana

Steven

Mark

0 53 37 6 0 12

53 0 1 0 2 0

37 1 0 1144 0 962

6 0 1144 0 0 1201

0 0 2 0 0 0

12 0 962 1201 0 0

In the dataset provided on our website, I’ve extracted this information for 90 individuals. 

Suppose I am interested in clustering people to discover the relationships among these 
individuals.  

s You try 
 
Can you perform hierarchical clustering on the Enron email dataset?

You can download the data from our website. (http://www.guidetodatamining.com. You may need to alter 
the code slightly to better match the problem.

Good luck!
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Link analysis

There is an entire subfield of data mining called link analysis devoted 

to this type of problem (evaluating relationships among entities) and 

there are specialized algorithms devoted to this task.

http://www.guidetodatamining.com
http://www.guidetodatamining.com


s You try - solution

In the dataset provided on our website, I’ve extracted this information for 90 individuals. 

We are clustering the people based on similarity of email correspondence. If most of my 
email correspondence is with Ann, Ben and Clara, and most of yours is with these people as 
well, that provides evidence that we are in the same group.  The idea is something like this:

between -> Ann Ben Clara Dongmei Emily Frank

my emails 127 25 119 5 1 6

your emails 172 35 123 7 3 5

Because our rows are similar, we cluster together. A problem arises when we add in our 
columns:

between -> me you Ann Ben Clara Dongmei Emily Frank

my emails 2 190 127 25 119 5 1 6

your emails 190 3 172 35 123 7 3 5

In looking at the ‘me’ column, you corresponded with me 190 times but I only sent myself 
email twice. The ‘you’ column is similar. Now when we compare our rows they don’t look so 
similar.  Before I included the ‘me’ and ‘you’ columns the Euclidean distance was 46 and after  
I included them it was 269!  To avoid this problem when I compute the Euclidean distance 
between two people I eliminate the columns for those two people. This required a slight 
change to the distance formula:

def distance(self, i, j):
    #enron specific distance formula
    sumSquares = 0
    for k in range(1, self.cols):
        if  (k != i) and (k != j) :
            sumSquares += (self.data[k][i] - self.data[k][j])**2
    return math.sqrt(sumSquares)
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Here is a subtree of the results:

I also performed k-means++ on the data, with k = 8. Here are some of the groups it 
discovered:

Class 5
========
chris.germany@enron.com
scott.neal@enron.com
marie.heard@enron.com
leslie.hansen@enron.com
mike.carson@enron.com

Class 6
========
sara.shackleton@enron.com
mark.taylor@enron.com
susan.scott@enron.com

Class 7
========
tana.jones@enron.com
louise.kitchen@enron.com
mike.grigsby@enron.com
david.forster@enron.com
m.presto@enron.com
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cara.semperger@enron.com ------------------+  
                                           |--+   
michelle.cash@enron.com ----------------+  |  
                                        |--+  
patrice.mims@enron.com -----------+     | 
                                  |--+  |  
soblander@carrfut.com ---------+  |  |  | 
                               |--+  |  | 
pete.davis@enron.com -------+  |     |  | 
                            |--+     |  |  
judy.hernandez@enron.com ---+        |  |  
                                     |--+ 
mike.carson@enron.com ------------+  |
                                  |--+ 
chris.dorland@enron.com -------+  |  
                               |--+ 
benjamin.rogers@enron.com --+  |      
                            |--+  
larry.campbell@enron.com ---+   

mailto:susan.scott@enron.com
mailto:susan.scott@enron.com
mailto:soblander@carrfut.com
mailto:soblander@carrfut.com


These results are interesting. Class 5 contains a number of traders. Chris Germany and Leslie  
Hansen are traders. Scott Neal   is a vice president of trading. Marie Heard is a lawyer.  Mike 
Carson is a manager of South East trading. The members of Class 7 are also interesting. All I 
know about Tana Jones is that she is an ‘executive’.  Louise Kitchen is President of online 
trading. Mike Grigsby was Vice President of Natural Gas. David Forster was a Vice President 
of trading. Kevin Presto (m.presto) was also a Vice President and a senior trader.
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There are many amazing hidden patterns in this 
Enron data. Can you find some? Download the complete 
data set and give it a try! 

(let me know what you find out)

And, hey, congratulations on getting to the end 
of this chapter!

Or try your hand at clustering 
other datasets. Remember, practice 
makes the heart grow fonder


