
Chapter 4 Content Based Filtering & Classification

Classification based on item 
attributes

In the previous chapters we talked about making recommendations by collaborative filtering 
(also called social filtering). In collaborative filtering we harness the power of a community 
of people to help us make recommendations. You buy Wolfgang Amadeus Phoenix. We know 
that many of our customers who bought that album also bought Contra by Vampire 
Weekend. So we recommend that album to you. I watch an episode of Doctor Who and 
Netflix recommends Quantum Leap because many people who watched Doctor Who also 
watched Quantum Leap. In previous chapters we talked about some of the difficulties of 
collaborative filtering including problems with data sparsity and scalability.  Another 
problem is that recommendation systems based on collaborative filtering tend to recommend 
already popular items—there is a bias toward popularity. As an extreme case, consider a 
debut album by a brand new band. Since that band and album have never been rated by 
anyone (or purchased by anyone since it is brand new), it will never be recommended. 

 

“These recommenders can create a rich-get-richer effect for popular products and vice-versa for unpopular ones”
Daniel Fleder & Kartik Hosanagar. 2009. “Blockbusters 
Culture’s Next Rise or Fall: The Impact of Recommender 
Systems on Sales Diversity” Management Science vol 55 



In this chapter we look at a different approach. Consider the streaming music site, Pandora. 
In Pandora, as many of you know, you can set up different streaming radio stations. You seed 
each station with an artist and Pandora will play music that is similar to that artist. I can 
create a station seeded with the band Phoenix. It then plays bands it thinks are similar to 
Phoenix—for example, it plays a tune by El Ten Eleven. It doesn't do this with collaborative 
filtering—because people who listened to Phoenix also listened to the El Ten Eleven. It plays 
El Ten Eleven because the algorithm believes that El Ten Eleven is musically similar to 
Phoenix. In fact, we can ask Pandora why it played a tune by the group:

It plays El Ten Eleven’s tune My Only Swerving  on the Phoenix station because “Based on 
what you told us so far, we’re playing this track because it features repetitive melodic 
phrasing, mixed acoustic and electric instrumentation, major key tonality, electric guitar riffs 
and an instrumental arrangement.” On my Hiromi station it plays a tune by E.S.T. because 
“it features classic jazz roots, a well-articulated piano solo, light drumming, an interesting 
song structure and interesting part writing.”
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Pandora bases its recommendation on what it calls The Music Genome Project. They hire 
professional musicians with a solid background in music theory as analysts who  determine 
the features (they call them 'genes') of a song. These analysts are given over 150 hours of 
training. Once trained they spend an average of 20-30 minutes analyzing a song to determine 
its genes/features.  Many of these genes are technical
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The analyst provides values for over 400 genes. Its a very labor intensive process and 
approximately 15,000 new songs are added per month.

The importance of selecting appropriate values
Consider two genes that Pandora may have used: genre and mood. The values of these might 
look like this:

So a genre value of 4 means ‘Soul’ and a mood value of 3 means ‘passion’. Suppose I have a 
rock song that is melancholy—for example the gag-inducing You’re Beautiful by James Blunt.   
In 2D space, inked quickly on paper, that would look as follows:
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NOTE: The Pandora algorithms are proprietary and I have 
no knowledge as to how they work. What follows is not a 
description of how Pandora works but rather an explanation 
of how to construct a similar system.

genregenre

Country 1

Jazz 2

Rock 3

Soul 4

Rap 5

MoodMood

Melancholy 1

joyful 2

passion 3

angry 4

unknown 5



Let's say Tex just absolutely loves You're Beautiful and we would like to recommend a song to 
him. 
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That “You’re Beautiful” 
is so sad and beautiful. I 
love it!

FACT:
In a Rolling Stone poll on the 

Most Annoying Songs ever, 

You’re Beautiful placed #7!



Let me populate our dataset with more songs. Song 1 is a jazz song that is melancholy; Song 2  
is a soul song that is angry and Song 3 is a jazz song that is angry. Which would you 
recommend to Tex?

I hope you see that we have a fatal flaw in our scheme. Let's take a look at the possible values 
for our variables again:

If we are trying to use any distance metrics with this scheme we are saying that jazz is closer 
to rock than it is to soul (the distance between jazz and rock is 1 and the distance between 

MoodMood

melancholy 1

joyful 2

passion 3

angry 4

unknown 5

genregenre

Country 1

Jazz 2

Rock 3

Soul 4

Rap 5
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Song 1 looks closest!



jazz and soul is 2). Or melancholy is closer to joyful than it is to angry. Even when we 
rearrange values the problem remains.

Re-ordering does not solve the problem.  No matter how we rearrange the values this won't 
work. This shows us that we have chosen our features poorly. We want features where the 
values fall along a meaningful scale. We can easily fix our genre feature by dividing it into 5 
separate features—one for country, another for jazz, etc. 

They all can be on a 1-5 scale—how 'country' is the 
sound of this track—‘1’ means no hint of country to ‘5’ 
means this is a solid country sound. Now the scale 
does mean something. If we are trying to find a song 
similar to one that rated a country value of ‘5’, a song 
that rated a country of ‘4’ would be closer than one of 
a ‘1’.

MoodMood

melancholy 1

angry 2

passion 3

joyful 4

unknown 5

genregenre

Country 1

Jazz 2

Soul 3

Rap 4

Rock 5
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This is exactly how Pandora constructs its gene set. The values of most genes are on a scale of 
1-5 with ½ integer increments. Genes are arranged into categories. For example, there is a 
musical qualities category which contains genes for Blues Rock Qualities, Folk Rock 
Qualities, and Pop Rock Qualities among others. Another category is instruments with genes 
such as Accordion, Dirty Electric Guitar Riffs and Use of Dirty Sounding Organs. Using these 
genes, each of which has a well-defined set of values from 1 to 5, Pandora represents each 
song as a vector of 400 numeric values (each song is a point in a 400 dimensional space). 
Now Pandora can make recommendations (that is, decide to play a song on a user-defined 
radio station) based on standard distance functions like those we already have seen. 

A simple example
Let us create a simple dataset so we can explore this approach. Suppose we have seven 
features each one ranging from 1-5 in ½ integer increments (I admit this isn't a very rational 
nor complete selection):

Amount of piano 1 indicates lack of piano; 5 indicates piano 
throughout and featured prominently 

Amount of vocals 1 indicates lack of vocals; 5 indicates prominent 
vocals throughout song.

Driving beat Combination of constant tempo, and how the drums 
& bass drive the beat.

Blues Influence

Presence of dirty electric 
guitar

Presence of backup vocals

Rap Influence

Now, using those features I rate ten tunes:
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Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1

Todd Snider/ 
Don't Tempt Me

4 5 4 4 1 5 1

The Black Keys/ 
Magic Potion

1 4 5 3.5 5 1 1

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1

Black Eyed Peas/ 
Rock that Body

2 5 5 1 2 2 4

La Roux/ 
Bulletproof

5 5 4 2 1 1 1

Mike Posner/ 
Cooler than me

2.5 4 4 1 1 1 1

Lady Gaga/ 
Alejandro

1 5 3 2 1 2 1

Thus, each tune is represented as a list of numbers and we can use any distance function to 
compute the distance between tunes. For example,  The Manhattan Distance between Dr. 
Dog’s Fate and Phoenix’s Lisztomania is:

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Distance 0.5 1 1.5 0 3 3 0

summing those distances gives us a Manhattan Distance of 9.
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s sharpen your pencil

I am trying to find out what tune is closest to Glee’s rendition of 
Jessie’s Girl using Euclidean Distance.  Can you finish the following 
table and determine what group is closest?

distance to Glee’s 
Jessie’s Girl

Dr. Dog/ Fate

Phoenix/ Lisztomania

Heartless Bastards / 
Out at Sea

Todd Snider/ Don't Tempt Me

The Black Keys/ Magic Potion

Glee Cast/ Jessie's Girl

Black Eyed Peas/ Rock that Body

La Roux/ Bulletproof

Mike Posner/ Cooler than me

Lady Gaga/ Alejandro

??

4.822

4.153

4.387

4.528

0

5.408

6.500

5.701

??
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s sharpen your pencil - solution

distance to Glee’s 
Jessie’s Girl

Dr. Dog/ Fate

Lady Gaga/ Alejandro

2.291

4.387

Recall that the Euclidean Distance between any two objects, x and y, 
which have n attributes is:

                  d(x, y) = (xk − yk )
2

k=1

n

∑

So the Euclidean Distance between Glee and Lady Gaga  

piano vocals beat blues guitar backup rap SUM SQRT

Glee 1 5 3.5 3 4 5 1

Lady 
G

1 5 3 2 1 2 1

(x-y) 0 0 0.5 1 3 3 0

(x-y)2 0 0 0.25 1 9 9 0 19.25 4.387

CONTENT BASED FILTERING & CLASSIFICATION
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Doing it Python Style!
Recall that our data for social filtering was of the format:

users = {"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0, 
! ! !     "Norah Jones": 4.5, "Phoenix": 5.0, 
                      "Slightly Stoopid": 1.5, "The Strokes": 2.5, 
                      "Vampire Weekend": 2.0},       
         "Bill":     {"Blues Traveler": 2.0, "Broken Bells": 3.5, 
                      "Deadmau5": 4.0, "Phoenix": 2.0, 
                      "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0}}

We can represent this current data in a similar way:

music = {"Dr Dog/Fate": {"piano": 2.5, "vocals": 4, "beat": 3.5, 
                         "blues": 3, "guitar": 5, "backup vocals": 4,       
                         "rap": 1},         
!    "Phoenix/Lisztomania": {"piano": 2, "vocals": 5, "beat": 5,  
                                 "blues": 3, "guitar": 2, 
                                 "backup vocals": 1, "rap": 1},         
!    "Heartless Bastards/Out at Sea": {"piano": 1, "vocals": 5, 
                                           "beat": 4, "blues": 2, 
! ! ! ! ! !        "guitar": 4, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !   
         "Todd Snider/Don't Tempt Me": {"piano": 4, "vocals": 5, 
                                        "beat": 4, "blues": 4, 
! ! ! ! ! !     "guitar": 1, 
                                        "backup vocals": 5, "rap": 1},         
!    "The Black Keys/Magic Potion":{"piano": 1, "vocals": 4, 
                                           "beat": 5, "blues": 3.5, 
! ! ! ! ! !        "guitar": 5, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !       
         "Glee Cast/Jessie's Girl": {"piano": 1, "vocals": 5, 
                                     "beat": 3.5, "blues": 3, 
! ! ! ! ! !  "guitar":4, "backup vocals": 5, 
                                     "rap": 1},         
!    "La Roux/Bulletproof": {"piano": 5, "vocals": 5, "beat": 4, 
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                                 "blues": 2, "guitar": 1, 
                                 "backup vocals": 1, "rap": 1},         
!    "Mike Posner": {"piano": 2.5, "vocals": 4, "beat": 4, 
                         "blues": 1, "guitar": 1, "backup vocals": 1, 
                         "rap": 1},         
!    "Black Eyed Peas/Rock That Body": {"piano": 2, "vocals": 5, 
                                            "beat": 5, "blues": 1, 
! ! ! ! ! ! !   "guitar": 2, 
                                            "backup vocals": 2, 
                                            "rap": 4},         !   
         "Lady Gaga/Alejandro": {"piano": 1, "vocals": 5, "beat": 3,  
                                 "blues": 2, "guitar": 1, 
                                 "backup vocals": 2, "rap": 1}}

Now suppose I have a friend who says he likes the Black Keys Magic Potion. I can plug that 
into my handy Manhattan distance function:

>>> computeNearestNeighbor('The Black Keys/Magic Potion', music) 

[(4.5, 'Heartless Bastards/Out at Sea'), (5.5, 'Phoenix/Lisztomania'), 
(6.5, 'Dr Dog/Fate'), (8.0, "Glee Cast/Jessie's Girl"), (9.0, 'Mike 
Posner'), (9.5, 'Lady Gaga/Alejandro'), (11.5, 'Black Eyed Peas/Rock 
That Body'), (11.5, 'La Roux/Bulletproof'), (13.5, "Todd Snider/Don't 
Tempt Me")]

and I can recommend to him Heartless Bastard's Out at Sea. This is actually a pretty good 
recommendation. 

CONTENT BASED FILTERING & CLASSIFICATION
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NOTE:
The code for this example, as well as all 
examples in this book, is available on the 
book website
 http://www.guidetodatamining.com

http://www.guidetodatamining.com/
http://www.guidetodatamining.com/


Answering the question “Why?”
When Pandora recommends something it explains 
why you might like it:

We can do the same.  Remember our friend who liked The Black Keys Magic Potion and we 
recommended Heartless Bastards Out at Sea. What features influenced that 
recommendation?  We can compare the two feature vectors:

Piano Vocals Driving 
beat

Blues 
infl.

Dirty elec. 
Guitar

Backup 
vocals

Rap 
infl.

Black Keys
Magic Potion

1 5 4 2 4 1 1

Heartless Bastards
Out at Sea

1 4 5 3.5 5 1 1

difference 0 1 1 1.5 1 0 0

The features that are closest between the two tunes are piano, presence of backup vocals, and 
rap influence—they all have a distance of zero. However, all are on the low end of the scale: 
no piano, no presence of backup vocals, and no rap influence and it probably would not be 
helpful to say “We think you would like this tune because it lacks backup vocals.” Instead, we 
will focus on what the tunes have in common on the high end of the scale.
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We think you might like Heartless Bastards Out 
at Sea because it has a driving beat and 
features vocals and dirty electric guitar.

Because  our data set has few features, and is not well-balanced, the other recommendations 
are not as compelling:

>>> computeNearestNeighbor("Phoenix/Lisztomania", music) 

[(5, 'Heartless Bastards/Out at Sea'), (5.5, 'Mike Posner'), (5.5, 'The 
Black Keys/Magic Potion'), (6, 'Black Eyed Peas/Rock That Body'), (6, 
'La Roux/Bulletproof'), (6, 'Lady Gaga/Alejandro'), (8.5, "Glee Cast/
Jessie's Girl"), (9.0, 'Dr Dog/Fate'), (9, "Todd Snider/Don't Tempt 
Me")]

>>> computeNearestNeighbor("Lady Gaga/Alejandro", music) 

[(5, 'Heartless Bastards/Out at Sea'), (5.5, 'Mike Posner'), (6, 'La 
Roux/Bulletproof'), (6, 'Phoenix/Lisztomania'), (7.5, "Glee Cast/
Jessie's Girl"), (8, 'Black Eyed Peas/Rock That Body'), (9, "Todd 
Snider/Don't Tempt Me"), (9.5, 'The Black Keys/Magic Potion'), (10.0, 
'Dr Dog/Fate')]

That Lady Gaga recommendation is particularly bad.

CONTENT BASED FILTERING & CLASSIFICATION
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A problem of scale
Suppose I want to add another feature to my set. This time I will add beats per minute (or 
bpm). This makes some sense—I might like fast beat songs or slow ballads. Now my data 
would look like this:

Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

bpm

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1 140
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1 110

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1 130

The Black 
Keys/ 
Magic Potion

1 4 5 3.5 5 1 1 88

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1 120

Bad Plus/ 
Smells like 
Teen Spirit

5 1 2 1 1 1 1 90

Without using beats per minute, the closest match to The Black Keys’ Magic Potion is 
Heartless Bastards’ Out to Sea and the tune furthest away is Bad Plus’s version of Smells Like  
Teen Spirit.  However, once we add beats per minute, it wrecks havoc with our distance 
function—bpm dominates the calculation. Now Bad Plus is closest to The Black Keys simply 
because the bpm of the two tunes are close.
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Consider another example. Suppose I have a dating site and I have the weird idea that the 
best attributes to match people up by are salary and age.

Here the scale for age ranges from 25 to 53 for a difference of 28 and the salary scale ranges 
from 43,000 to 115,000 for a difference of 72,000. Because these scales are so different, 
salary dominates any distance calculation. If we just tried to eyeball matches we might 
recommend David to Yun since they are the same age and their salaries are fairly close. 
However, if we went by any of the distance formulas we have covered,  53-year old Brian 
would be the person recommended to Yun. This does not look good for my fledgling dating 
site. 

In fact, this difference in scale 

among attributes is a big problem 

for any recommendation system.

Arghhhh.

CONTENT BASED FILTERING & CLASSIFICATION
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guysguysguys

name age salary

Brian A 53 70,000

Abdullah K 25 105,000

David A 35 69,000

Michael W 48 43,000

galsgalsgals

name age salary

Yun L 35 75,000

Allie C 52 55,000

Daniela C 27 45,000

Rita A 37 115,000



Normalization 
  

No need to panic. 

Relax. 

The solution is normalization!
To remove this bias we need to 
standardize or normalize the data. 
One common method of 
normalization involves having the 
values of each feature range from 0 
to 1.  

For example, consider the salary attribute in our dating example. The minimum salary was 
43,000 and the max was 115,000. That makes the range from minimum to maximum 
72,000. To convert each value to a value in the range 0 to 1 we subtract the minimum from 
the value and divide by the range.

So the normalized value for Yun is 

(75,000 - 43,000) / 72,000 = 0.444

Depending on the dataset this rough method of 
normalization may work well. 

galsgalsgals

name salary normalized 
salary

Yun L 75,000 0.444

Allie C 55,000 0.167

Daniela C 45,000 0.028

Rita A 115,000 1.0
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Shhh. I’m 
normalizing



If you have taken a statistics course you will be familiar with more accurate methods for 
standardizing data.  For example,  we can use what is called The Standard Score which can be 
computed as follows

Standard Deviation is

                                                    sd =
(xi − x)

2

i
∑
card(x)

card(x) is the cardinality of x—that is, how many values there are.

CONTENT BASED FILTERING & CLASSIFICATION
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 We can standardize a value using the  
 Standard Score (aka  z-score) which  
 tells us how many deviations the 
 value is from the mean! 

 
 (each value)  - (mean)
                            = Standard 
 (standard deviation)       Score

By the way,  if you are rusty with 
statistics and like manga be sure to check out the awesome book “The 
Manga Guide to Statistics” by Shin 
Takahashi.



Consider the data from the dating site example a few pages back. 

The sum of all the salaries is 577,000. Since there are 8 people, the 
mean is 72,125.

Now let us compute the standard deviation:

sd =
(xi − x)

2

i
∑
card(x)

so that would be 

(75,000 − 72,125)2 + (55,000 − 72,125)2 + (45,000 − 72,125)2 + ...
8

= 8,265,625 + 293,265,625 + 735,765,625 + ...
8

= 602,395,375

= 24,543.01

name salary

Yun L 75,000

Allie C 55,000

Daniela C 45,000

Rita A 115,000

Brian A 70,000

Abdullah K 105,000

David A 69,000

Michael W 43,000
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Again, the standard score is

 

So the Standard Score for Yun’s salary is

75000 − 72125
24543.01

= 2875
24543.01

= 0.117

s sharpen your pencil

Can you compute the Standard Scores for the following people?

CONTENT BASED FILTERING & CLASSIFICATION
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(each value) - (mean)

(standard deviation)

name salary Standard 
Score

Yun L 75,000 0.117
Allie C 55,000

Daniela C 45,000
Rita A 115,000



The problem with using Standard Score
The problem with the standard score is that it is greatly influenced by outliers. For example, 
if all the 100 employees of LargeMart make $10/hr but the CEO makes six million a year the 
mean hourly wage is  

( 100 * $10  + 6,000,000 / (40 * 52)) / 101 

= (1000 + 2885) / 101  =  $38/hr. 

s sharpen your pencil — solution

Can you compute the Standard Scores for the following people?

                                                      Allie:  
                                                     (55,000 - 72,125) / 24,543.01
                                                     = -0.698

                                                      Daniela:
                                                      (45,000 - 72,125) / 24,543.01
                                                      = -1.105

                 Rita:
                 (115,000 - 72,125) / 24,543.01
                 = 1.747
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name salary Standard 
Score

Yun L 75,000 0.117
Allie C 55,000 -0.698

Daniela C 45,000 -1.105
Rita A 115,000 1.747



Not a bad average wage at LargeMart.  As you can see, the mean is greatly influenced by 
outliers.    

Because of this problem with the mean, the standard score formula is often modified. 

Modified Standard Score

CONTENT BASED FILTERING & CLASSIFICATION
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To compute the Modified Standard 
Score you replace the mean in the 
above formula by the median (the 
middle value) and replace the standard 
deviation by what is called the 
absolute standard deviation:

asd = 1
card(x)

xi − µ
i
∑

where μ is the median.

Modified Standard Score:

(each value) - (median)

(absolute standard deviation)

To compute the median you arrange 
the values from lowest to highest and 
pick the middle value. If there are an 
even number of values the median is 
the average of the two middle values.



Okay, let’s give this a try. In the table on the right I’ve 
arranged our salaries from lowest to highest. Since there 
are an equal number of values, the median is the average 
of the two middle values:

median = (69,000 + 70,000)
2

= 69,500

The absolute standard deviation is

asd = 1
8
( 43,000 − 69,500 + 45,000 − 69,500 + 55,000 − 69,500) + ...)

= 1
8
(26,500 + 24,500 +14,500 + 500 + ...)

= 1
8
(153,000) = 19,125

Now let us compute the Modified Standard Score for Yun.                                

      

mss = (75,000 − 69,500)
19,125

= 5,500
19,125

= 0.2876

Name Salary

Michael W

Daniela C

Allie C

David A

Brian A

Yun L

Abdullah K

Rita A

43,000

45,000

55,000

69,000

70,000

75,000

105,000

115,000
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asd = 1
card(x)

xi − µ
i
∑

Modified Standard Score:

(each value) - (median)

(absolute standard deviation)



s sharpen your pencil

The following table shows the play count of various tracks I played. Can 
you standardize the values using the Modified Standard Score?

CONTENT BASED FILTERING & CLASSIFICATION
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track play 
count

modified 
standard 

score

Power/Marcus Miller 21

I Breathe In, I 
Breathe Out/
Chris Cagle

15

Blessed / Jill Scott 12

Europa/Santana 3

Santa Fe/ Beirut 7



s sharpen your pencil — solution

The following table shows the play count of various tracks I played. Can 
you standardize the values using the Modified Standard Score?

Step 1. Computing the median.
I put the values in order (3, 7, 12, 15, 21) and select the middle value, 12.
The median µ is 12.

Step 2. Computing the Absolute Standard Deviation.

asd = 1
5
( 3−12 + 7 −12 + 12 −12 + 15 −12 + 21−12 )

= 1
5
(9 + 5 + 0 + 3+ 9) = 1

5
(26) = 5.2

Step 3. Computing the Modified Standard Scores.

Power / Marcus Miller:  (21 - 12) / 5.2 =  9/5.2 = 1.7307692

I Breathe In, I Breathe Out / Chris Cagle: (15 - 12) / 5.2 = 3/5.2 = 0.5769231

Blessed / Jill Scott: (12 - 12) / 5.2 = 0

Europa / Santana: (3 - 12) / 5.2 = -9 / 5.2 = -1.7307692

Santa Fe / Beirut: (7 - 12) / 5.2 = - 5 / 5.2 = -0.961538
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To normalize or not.
Normalization makes sense when the scale of the features—the scales of the different 
dimensions—significantly varies. In the music example earlier in the chapter there were a 
number of features that ranged from one to five and then beats-per-minute that could 
potentially range from 60 to 180. In the dating example, there was also a mismatch of scale 
between the features of age and salary. 

Suppose I am dreaming of being rich and looking at homes in the Santa Fe, New Mexico area.   

The table on the left shows a few recent 
homes on the market.

Here we see the problem again. Because 
the scale of one feature (in this case asking  
price) is so much larger than others it will 
dominate any distance calculation. Having  
two bedrooms or twenty will not have 
much of an effect on the total distance 
between two homes.

Consider a person giving thumbs up and thumbs down ratings to news articles on a news 
site. Here a list representing a user’s ratings consists of binary values (1 = thumbs up; 0 = 
thumbs down):

asking 
price

bedrooms bathrooms sq. ft.

$1,045,000 2 2.0 1,860
$1,895,000 3 4.0 2,907
$3,300,000 6 7.0 10,180
$6,800,000 5 6.0 8,653
$2,250,000 3 2.0 1,030

CONTENT BASED FILTERING & CLASSIFICATION
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We should normalize when

1. our data mining method calculates the distance 
between two entries based on the values of their 
features.

2. the scale of the different features is different 
(especially when it is drastically different—for ex., 
the scale of asking price compared to the scale of 
the number of bedrooms). 



Bill = {0, 0, 0, 1, 1, 1, 1, 0, 1, 0 …  }

Obviously there is no need to normalize this data. What about the Pandora case: all variables 
lie on a scale from 1 to 5 inclusive. Should we normalize or not?  It probably wouldn't hurt the  
accuracy of the algorithm if we normalized, but keep in mind that there is a computational 
cost involved with normalizing. In this case, we might empirically compare results between 
using the regular and normalized data and select the best performing approach. Later in this 
chapter we will see a case where normalization reduces accuracy.

Back to Pandora
In the Pandora inspired example, we had each song represented by a number of attributes. If 
a user creates a radio station for Green Day we decide what to play based on a nearest 
neighbor approach.  Pandora allows a user to give a particular tune a thumbs up or thumbs 
down rating. How do we use the information that a user gives a thumbs up for a particular 
song.?

Suppose I use 2 attributes for songs: the amount of dirty guitar and the presence of a driving 
beat both rated on a 1-5 scale. A user has given the thumbs up to 5 songs indicating he liked 
the song (and indicated on the following chart with a 'L'); and a thumbs down to 5 songs 
indicating he disliked the song (indicated by a 'D').  

Do you think the user will like or dislike the song indicated by the ‘?’ in this chart?
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I am guessing you said he would like the song. We base this on the fact that the ‘?’ is closer to 
the Ls in the chart than the Ds. We will spend the rest of this chapter and the next describing 
computational approaches to this idea.  The most obvious approach is to find the nearest 
neighbor of the “?” and predict that it will share the class of the nearest neighbor. The 
question mark’s nearest neighbor is an L so we would predict that the ‘? tune’ is something 
the user would like.

 The Python nearest neighbor classifier code
Let's use the example dataset I used earlier—ten tunes rated on 7 attributes (amount of 
piano, vocals, driving beat, blues influence, dirty electric guitar, backup vocals, rap 
influence). 

Piano Vocals Driving 
beat

Blues 
infl.

Dirty 
elec. 
Guitar

Backup 
vocals

Rap 
infl.

Dr. Dog/ Fate 2.5 4 3.5 3 5 4 1
Phoenix/ 
Lisztomania

2 5 5 3 2 1 1

Heartless 
Bastards / 
Out at Sea

1 5 4 2 4 1 1

Todd Snider/ 
Don't Tempt Me

4 5 4 4 1 5 1

The Black Keys/ 
Magic Potion

1 4 5 3.5 5 1 1

Glee Cast/ 
Jessie's Girl

1 5 3.5 3 4 5 1

Black Eyed Peas/ 
Rock that Body

2 5 5 1 2 2 4

La Roux/ 
Bulletproof

5 5 4 2 1 1 1

Mike Posner/ 
Cooler than me

2.5 4 4 1 1 1 1

Lady Gaga/ 
Alejandro

1 5 3 2 1 2 1

CONTENT BASED FILTERING & CLASSIFICATION

4-29



Earlier in this chapter we developed a Python representation of this data:

music = {"Dr Dog/Fate": {"piano": 2.5, "vocals": 4, "beat": 3.5, 
                         "blues": 3, "guitar": 5, "backup vocals": 4,       
                         "rap": 1},         
!    "Phoenix/Lisztomania": {"piano": 2, "vocals": 5, "beat": 5,  
                                 "blues": 3, "guitar": 2, 
                                 "backup vocals": 1, "rap": 1},         
!    "Heartless Bastards/Out at Sea": {"piano": 1, "vocals": 5, 
                                           "beat": 4, "blues": 2, 
! ! ! ! ! !        "guitar": 4, 
                                           "backup vocals": 1, 
                                           "rap": 1},         !
         "Todd Snider/Don't Tempt Me": {"piano": 4, "vocals": 5, 
                                        "beat": 4, "blues": 4, 
! ! ! ! ! !     "guitar": 1, 
                                        "backup vocals": 5, "rap": 1},        

Here the strings piano, vocals, beat, blues, guitar, backup vocals, and rap occur multiple 
times; if I have a 100,000 tunes those strings are repeated 100,000 times.  I'm going to 
remove those strings from the representation of our data and simply use vectors:

#
#  the item vector represents the attributes: piano, vocals, 
#  beat, blues, guitar, backup vocals, rap
#
items = {"Dr Dog/Fate": [2.5, 4, 3.5, 3, 5, 4, 1],
         "Phoenix/Lisztomania": [2, 5, 5, 3, 2, 1, 1],
         "Heartless Bastards/Out at Sea": [1, 5, 4, 2, 4, 1, 1],
         "Todd Snider/Don't Tempt Me": [4, 5, 4, 4, 1, 5, 1],
         "The Black Keys/Magic Potion": [1, 4, 5, 3.5, 5, 1, 1],
         "Glee Cast/Jessie's Girl": [1, 5, 3.5, 3, 4, 5, 1],
         "La Roux/Bulletproof": [5, 5, 4, 2, 1, 1, 1],
         "Mike Posner": [2.5, 4, 4, 1, 1, 1, 1],
         "Black Eyed Peas/Rock That Body": [2, 5, 5, 1, 2, 2, 4],
         "Lady Gaga/Alejandro": [1, 5, 3, 2, 1, 2, 1]}
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In linear algebra, a vector is 
a quantity that has magnitude and 
direction.
Various well defined operators can 
be performed on vectors including 
adding and subtracting vectors and 
scalar multiplication.

In data mining, a vector 
is simply a list of numbers 
that represent the 
attributes of an object. The 
example on the previous page 
represented attributes of a 
song as a list of numbers. 
Another example, would be 
representing a text document 
as a vector—each position of 
the vector would represent a 
particular word and the 
number at that position 
would represent how many 
times that word occurred in 
the text. 

Plus, using the 
word “vector” instead 
of “list of 
attributes” is cool!

Once we define attributes 
this way, we can perform 
vector operations (from 
linear algebra) on them.



In addition to representing the attributes of a song as a vector, I need to represent the 
thumbs up/ thumbs down ratings that users gives to songs. Because each user doesn't rate all 
songs (sparse data) I will go with the dictionary of dictionaries approach:

users = {"Angelica": {"Dr Dog/Fate": "L", "Phoenix/Lisztomania": "L", 
                      "Heartless Bastards/Out at Sea": "D", 
                      "Todd Snider/Don't Tempt Me": "D", 
                      "The Black Keys/Magic Potion": "D", 
                      "Glee Cast/Jessie's Girl": "L", 
                      "La Roux/Bulletproof": "D", 
                      "Mike Posner": "D", 
                      "Black Eyed Peas/Rock That Body": "D", 
                      "Lady Gaga/Alejandro": "L"},         
         "Bill":  {"Dr Dog/Fate": "L", "Phoenix/Lisztomania": "L", 
                   "Heartless Bastards/Out at Sea": "L", 
                   "Todd Snider/Don't Tempt Me": "D",                      
                   "The Black Keys/Magic Potion": "L", 
                   "Glee Cast/Jessie's Girl": "D", 
                   "La Roux/Bulletproof": "D", "Mike Posner": "D",                       
                   "Black Eyed Peas/Rock That Body": "D", 
                   "Lady Gaga/Alejandro": "D"}             }

My way of representing ‘thumbs up’ as L  for  like and ‘thumbs down’ as D is arbitrary. You 
could use 0 and 1, like and dislike.

 In order to use the new vector format for songs I need to revise the Manhattan Distance and 
the computeNearestNeighbor functions.

def manhattan(vector1, vector2):    
   """Computes the Manhattan distance."""    
   distance = 0 
   total = 0 
   n = len(vector1)    
   for i in range(n):        
      distance += abs(vector1[i] - vector2[i])        
   return distance 
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def computeNearestNeighbor(itemName, itemVector, items):    
   """creates a sorted list of items based on their distance to item"""   
   distances = []    
   for otherItem in items:        
      if otherItem != itemName:            
         distance = manhattan(itemVector, items[otherItem])            
         distances.append((distance, otherItem))    
   # sort based on distance -- closest first    
   distances.sort()    
   return distances

Finally, I need to create a classify function. I want to predict how a particular user would rate 
an item represented by itemName and itemVector. For example:

"Chris Cagle/ I Breathe In. I Breathe Out"  [1, 5, 2.5, 1, 1, 5, 1]

(NOTE: To better format the Python example below, I will use the string Cagle to represent 
that singer and song pair.)

The first thing the function needs to do is find the nearest neighbor of this Chris Cagle tune. 
Then it needs to see how the user rated that nearest neighbor and predict that the user will 
rate Chris Cagle the same. Here's my rudimentary classify function:

def classify(user, itemName, itemVector):    
   """Classify the itemName based on user ratings       
   Should really have items and users as parameters"""    
   # first find nearest neighbor    
   nearest = computeNearestNeighbor(itemName, itemVector, items)[0][1]    
   rating = users[user][nearest]    
   return rating

Ok. Let's give this a try. I wonder if Angelica will like Chris Cagle's I Breathe In, I Breathe 
Out?

classify('Angelica', 'Cagle', [1, 5, 2.5, 1, 1, 5, 1])
"L"

We are predicting she will like it!  Why are we predicting that?

CONTENT BASED FILTERING & CLASSIFICATION
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computeNearestNeighbor('Angelica', 'Cagle', [1, 5, 2.5, 1, 1, 5, 1])

[(4.5, 'Lady Gaga/Alejandro'), (6.0, "Glee Cast/Jessie's Girl"), (7.5, 
"Todd Snider/Don't Tempt Me"), (8.0, 'Mike Posner'), (9.5, 'Heartless 
Bastards/Out at Sea'), (10.5, 'Black Eyed Peas/Rock That Body'), (10.5, 
'Dr Dog/Fate'), (10.5, 'La Roux/Bulletproof'), (10.5, 'Phoenix/
Lisztomania'), (14.0, 'The Black Keys/Magic Potion')]

We are predicting that Angelica will like Chris Cagle's I Breathe In, I Breathe Out because 
that tune's nearest neighbor is Lady Gaga’s Alejandro and Angelica liked that tune.

What we have done here is build a classifier—in this case, our task was to classify tunes as 
belonging to one of two groups—the like group and the dislike group.

4-34

Attention, Attention.
We just built a classifier!!



A classifier is a program that uses an object’s attributes to 
determine what group or class it belongs to!

A classifier uses a set of objects that are already labeled with the class they belong to. It uses 
that set to classify new, unlabeled objects. So in our example, we knew about songs that 
Angelica liked (labeled ‘liked’) and songs she did not like. We wanted to predict whether 
Angelica would like a Chris Cagle tune.

Classifiers can be used in a wide range of applications. The 
following page lists just a few.

CONTENT BASED FILTERING & CLASSIFICATION
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I like Phoenix, Lady 
Gaga and Dr. Dog. I don’t 
like The Black Keys and 

Mike Posner!

First we found a song Angelica  rated that was most similar to the Chris Cagle tune. 
It was Lady Gaga’s Alejandro

Next, we checked whether Angelica liked or disliked the Alejandro—she liked it. So we predict that Angelica will also like the Chris Cagle tune, I Breathe In, I Breathe Out.
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Twitter Sentiment Classification
A number of people are working on 
classifying the sentiment (a positive or 
negative opinion) in tweets. This can be 
used in a variety of ways. For example, if 
Axe releases a new underarm deoderant, 
they can check whether people like it or 
not. The attributes are the words in the 
tweet.

Automatic identification of people in 
photos.
There are apps now that can identify and 
tag your friends in photographs. (And 
the same techniques apply to identifying 
people walking down the street using 
public video cams.) Techniques vary but 
some of them use attributes like the 
relative position and size of a person’s 
eyes, nose, jaw, etc.

Classification for Targeted Political Ads
This is called microtargeting. People are 
classified into such groups as “Barn 
Raisers”, “Inner Compass”, and “Hearth 
Keepers.” Hearth Keepers, for example, 
focus on their family and keep to 
themselves. 

Health and the Quantified Self
It’s the start of the quanitifed self 
explosion. We can now buy simple 
devices like the Fitbit, and the Nike 
Fuelband. Intel and other companies are 
working on intelligent homes that have 
floors that can weigh us, keep track of 
our movements and alert someone if we 
deviate from normal. Experts are 
predicting that in a few years we will be 
wearing tiny compu-patches that can 
monitor dozens of factors in real time 
and make instant classifications.

The list is endless
 
• classifying people as terrorist or 

nonterrorist
 

• automatic classification of email (hey, 
this email looks pretty important; this 
is regular email; this looks like spam)

• predicting medical clinical outcomes

• identifying financial fraud (for ex., 
credit card fraud)

Targeted Marketing
Similar to political microtargeting. 
Instead of a broad advertising campaign 
to sell my expensive Vegas time share 
luxury condos, can I identify likely 
buyers and market just to them? Even 
better if I can identify subgroups of likely  
buyers and I can really tailor my ads to 
specific groups.



What sport?
To give you a preview of what we will be working on in the next few chapters let us work with 
an easier example than those given on the previous page—classifying what sport various 
world-class women athletes play based solely on their height and weight.  In the following 
table I have a small sample dataset drawn from a variety of web sources.

Name Sport Age Height Weight

Asuka Teramoto

Brittainey Raven

Chen Nan

Gabby Douglas

Helalia Johannes

Irina Miketenko

Jennifer Lacy

Kara Goucher

Linlin Deng

Nakia Sanford

Nikki Blue

Qiushuang Huang

Rebecca Tunney

Rene Kalmer

Shanna Crossley

Shavonte Zellous

Tatyana Petrova

Tiki Gelana

Valeria Straneo

Viktoria Komova

Gymnastics 16 54 66

Basketball 22 72 162

Basketball 30 78 204

Gymnastics 16 49 90

Track 32 65 99

Track 40 63 106

Basketball 27 75 175

Track 34 67 123

Gymnastics 16 54 68

Basketball 34 76 200

Basketball 26 68 163

Gymnastics 20 61 95

Gymnastics 16 58 77

Track 32 70 108

Basketball 26 70 155

Basketball 24 70 155

Track 29 63 108

Track 25 65 106

Track 36 66 97

Gymnastics 17 61 76

CONTENT BASED FILTERING & CLASSIFICATION
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The gymnastic data lists some of the top participants in the 2012 and 2008 Olympics. The 
basketball players play for teams in the WNBA.  The women track stars were finishers in the 
2012 Olympic marathon . Granted this is a trivial example but it will allow us to apply some 
of the techniques we have learned.

As you can see, I've included age in the table. Just scanning the data you can see that age 
alone is a moderately good predictor.  Try to guess the sports of these athletes.
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Candace Parker; Age 26

McKayla Maroney; Age 16

Olivera Jevtić: Age 35

Lisa Jane Weightman; Age 34



The answers
Candace Parker plays basketball for the WNBA’s Los Angeles Sparks and Russia’s UMMC 
Ekaterinburg. McKayla Maroney was a member of the U.S. Women’s Gymnastic Team and 
won a Gold and a Silver. Olivera Jevtić is a Serbian long-distance runner who competed in 
the 2008 and 2012 Olympics. Lisa Jane Weightman is an Australian long-distance runner 
who also competed in the 2008 and 2012 Olympics. 

You just performed classification—you predicted the class of objects based on their 
attributes. (In this case, predicting the sport of athletes based on a single attribute, age.)

k brain calisthenics 
        
Suppose I want to guess what sport a person plays based on their height 
and weight. My database is small—only two people. Nakia 
Sanford, the center for the Women’s National Basketball 
Association team Phoenix Mercury, is 6’4” and weighs 
200 pounds. Sarah Beale, a forward on England’s 
National Rugby Team, is 5’10” and weighs 190.
Based on that database, I want to classify Catherine 
Spencer as either a basketball player or rugby player. 
She is 5’10” and weighs 200 pounds. What sport do you 
think she plays?

CONTENT BASED FILTERING & CLASSIFICATION
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k brain calisthenics - cont’d
        
If you said rugby, you would be correct. Catherine Spencer is a forward on 
England’s national team. However, if we based our guess on a distance 
formula like Manhattan Distance we would be wrong. The Manhattan Distance 
between Catherine and Basketball player Nakia is 6 (they weigh the same 
and have a six inch difference in height). The distance between Catherine 
and Rugby player Sarah is 10 (their height is the same and they differ in 
weight by 10 pounds). So we would pick the closest person, Nakia, and 
predict Catherine plays the same sport.

Is there anything we learned that could help us make more accurate 
classifications?
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Hmmm. This rings a 
bell. I think there was 
something related to this 
earlier in the chapter...



Test Data.
Let us remove age from the picture. Here is a group of individuals I would like to classify:

 

k brain calisthenics - cont’d
        

We can use the Modified Standard Score!!!

      (each value) - (median)

      (absolute standard deviation)
            

CONTENT BASED FILTERING & CLASSIFICATION
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Name Sport Height Weight

Crystal Langhorne

Li Shanshan

Kerri Strug

Jaycie Phelps

Kelly Miller

Zhu Xiaolin

Lindsay Whalen

Koko Tsurumi

Paula Radcliffe

Erin Thorn

74 190

64 101

 57 87

` 60 97

 70 140

67 123

69 169

55 75

68 120

69 144

Let’s build a 
classifier!



Python Coding  
Instead of hard-coding the data in the Python code, I decided to put the data for this example 
into two files: athletesTrainingSet.txt and athletesTestSet.txt. 

I am going to use the data in the 
athletesTrainingSet.txt file to build the classifier. 
The data in the athletesTestSet.txt file will be used 
to evaluate this classifier. In other words, each entry  
in the test set will be classified by using all the 
entries in the training set.

 The format of these files looks like this:

 Asuka Teramoto Gymnastics 54  66

 Brittainey Raven  Basketball  72  162

 Chen Nan   Basketball  78  204

 Gabby Douglas  Gymnastics 49  90

Each line of the text represents an object described as a tab-separated list of values.  I want 
my classifier to use a person’s height and weight to predict what sport that person plays. So 
the last two columns are the numerical attributes I will use in the classifier and the second 
column represents the class that object is in. The athlete’s name is not used by the classifier. I 
don’t try to predict what sport a person plays based on their name and I am not trying to 
predict the name from some attributes.

  The data files and the Python 
code are on the book’s website, 
guidetodatamining.com.       
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Hey, you look what... 
maybe five foot eleven 
and 150? I bet your 
name is Clara Coleman.



However, keeping the name might be useful as a means of explaining the classifier’s decision 
to users: “We think Amelia Pond is a gymnast because she is closest in height and weight to 
Gabby Douglas who is a gymnast.” 

As I said, I am going to write my Python code to not be so hard coded to a particular example 
(for example, to only work for the athlete example). To help meet this goal I am going to add 
an initial header line to the athlete training set file that will indicate the function of each 
column.  Here are the first few lines of that file:

 comment   class  num  num

 Asuka Teramoto Gymnastics 54  66

 Brittainey Raven  Basketball  72  162

Any column labeled comment will be ignored by the classifier; a column labeled class 
represents the class of the object, and columns labeled num indicate numerical attributes of 
that object.

k brain calisthenics -
        

How do you think we should represent this data in Python? Here are some 
possibilities (or come up with your own representation).

a dictionary of the form: 
                  {'Asuka Termoto': ('Gymnastics', [54, 66]),
           'Brittainey Raven': ('Basketball', [72, 162]), ...

a list of lists of the form:  
                  [['Asuka Termoto', 'Gymnastics', 54, 66],
           ['Brittainey Raven', 'Basketball', 72, 162], ...

a list of tuples of the form:
                 [('Gymnastics', [54, 66], ['Asuka Termoto']),
           ('Basketball', [72, 162], ['Brittainey Raven'],...

CONTENT BASED FILTERING & CLASSIFICATION
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k brain calisthenics - answer
        

a dictionary of the form: 
                  {'Asuka Termoto': ('Gymnastics', [54, 66]),
           'Brittainey Raven': ('Basketball', [72, 162]), ...

This is not a very good representation of our data. The key for the dictionary is 
the athlete’s name, which we do not even use in the calculations.

a list of lists of the form:  
                  [['Asuka Termoto', 'Gymnastics', 54, 66],
           ['Brittainey Raven', 'Basketball', 72, 162], ...

This is not a bad representation. It mirrors the input file and since the nearest 
neighbor algorithm requires us to iterate through the list of objects, a list makes 
sense.

a list of tuples of the form:
                 [('Gymnastics', [54, 66], ['Asuka Termoto']),
           ('Basketball', [72, 162], ['Brittainey Raven'],... 

I like this representation better than the above since it separates the attributes 
into their own list and makes the division between class, attributes, and comments 
precise. I made the comment (the name in this case) a list since there could be 
multiple columns that are comments.
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My python code that reads in a file and converts it to the format

               [('Gymnastics', [54, 66], ['Asuka Termoto']),
          ('Basketball', [72, 162], ['Brittainey Raven'],... 

looks like this:

class Classifier:

    def __init__(self, filename):

        self.medianAndDeviation = []
        
        # reading the data in from the file
        f = open(filename)
        lines = f.readlines()
        f.close()
        self.format = lines[0].strip().split('\t')
        self.data = []
        for line in lines[1:]:
            fields = line.strip().split('\t')
            ignore = []
            vector = []
            for i in range(len(fields)):
                if self.format[i] == 'num':
                    vector.append(int(fields[i]))
                elif self.format[i] == 'comment':
                    ignore.append(fields[i])
                elif self.format[i] == 'class':
                    classification = fields[i]
            self.data.append((classification, vector, ignore))
        
        

CONTENT BASED FILTERING & CLASSIFICATION
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AssertionError?

See next page

s 
code it

Before we can standardize the 
data using the Modified Standard 
Score we need methods that will 
compute the median and absolute 
standard deviation of numbers 
in a list:

>>> heights = [54, 72, 78, 49, 65, 63, 75, 67, 54]
>>> median = classifier.getMedian(heights)
>>> median 
65
>>> asd = classifier.getAbsoluteStandardDeviation(heights, median)
>>> asd 
8.0

Can you write these methods?

Download the template testMedianAndASD.py to write and test these 
methods at guidetodatamining.com
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Assertion Errors and the Assert statement.
It is important that each component of a solution to a problem be turned into a piece of code 
that implements it and a piece of code that tests it.  In fact, it is good practice to write the test  
code before you write the implementation.  The code template I have provided contains a test  
function called unitTest. A simplified version of that function, showing only one test, is 
shown here:

def unitTest():
    list1 = [54, 72, 78, 49, 65, 63, 75, 67, 54]
    classifier = Classifier('athletesTrainingSet.txt')
    m1 = classifier.getMedian(list1)
    assert(round(m1, 3) == 65)
    print("getMedian and getAbsoluteStandardDeviation work correctly")

The getMedian function you are to complete initially looks like this:

def getMedian(self, alist):
        """return median of alist"""

        """TO BE DONE"""
        return 0

So initially, getMedian returns 0 as the median for any list. You are to complete getMedian 
so it returns the correct value.  In the unitTest procedure, I call getMedian with the list 

[54, 72, 78, 49, 65, 63, 75, 67, 54]

The assert statement in unitTest says the value returned by getMedian should equal 65.  If 
it does, execution continues to the next line and 

getMedian and getAbsoluteStandardDeviation work correctly

is printed. If they are not equal the program terminates with an error:
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File "testMedianAndASD.py", line 78, in unitTest

    assert(round(m1, 3) == 65)

AssertionError

If you download the code from the book’s website and run it without making any changes, 
you will get this error. Once you have correctly implemented getMedian and 
getAbsoluteStandardDeviation this error will disappear.

This use of assert as a means of testing software components is a common technique among 
software developers.

“it is important that each part of the specification be turned into a piece of code that 
implements it and a test that tests it. If you don’t have tests like these then you don’t know 
when you are done,  you don’t know if you got it right, and you don’t know that any future 
changes might be breaking something.” - Peter Norvig

4-48



Solution
Here is one way of writing these algorithms:

  def getMedian(self, alist):
        """return median of alist"""
        if alist == []:
            return []
        blist = sorted(alist)
        length = len(alist)
        if length % 2 == 1:
            # length of list is odd so return middle element
            return blist[int(((length + 1) / 2) -  1)]
        else:
            # length of list is even so compute midpoint
            v1 = blist[int(length / 2)]
            v2 =blist[(int(length / 2) - 1)]
            return (v1 + v2) / 2.0
        

    def getAbsoluteStandardDeviation(self, alist, median):
        """given alist and median return absolute standard deviation"""
        sum = 0
        for item in alist:
            sum += abs(item - median)
        return sum / len(alist)

As you can see my getMedian method first sorts the list before finding the median. Because I 
am not working with huge data sets I think this is a fine solution. If I wanted to optimize my 
code, I might replace this with a selection algorithm.

Right now, the data is read from the file athletesTrainingSet.txt and stored in the list data in 
the classifier with the following format:

[('Gymnastics', [54, 66], ['Asuka Teramoto']), 
 ('Basketball', [72, 162], ['Brittainey Raven']), 
 ('Basketball', [78, 204], ['Chen Nan']), 
 ('Gymnastics', [49, 90], ['Gabby Douglas']), ...

CONTENT BASED FILTERING & CLASSIFICATION
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Now I would like to normalize the vector so the list data in the classifier contains normalized 
values. For example,

[('Gymnastics', [-1.93277, -1.21842], ['Asuka Teramoto']),  
 ('Basketball', [1.09243, 1.63447], ['Brittainey Raven']), 
 ('Basketball', [2.10084, 2.88261], ['Chen Nan']),
 ('Gymnastics', [-2.77311, -0.50520], ['Gabby Douglas']), 
 ('Track', [-0.08403, -0.23774], ['Helalia Johannes']), 
 ('Track', [-0.42017, -0.02972], ['Irina Miketenko']), 

To do this I am going to add the following lines to my init method:

        # get length of instance vector
        self.vlen = len(self.data[0][1])
        # now normalize the data
        for i in range(self.vlen):
            self.normalizeColumn(i)

In the for loop we want to normalize the data, column by column. So the first time through 
the loop we will normalize the height column, and the next time through, the weight column.

s code it

Can you write the normalizeColumn method?

Download the template normalizeColumnTemplate.py to write and test 
this method at guidetodatamining.com
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Solution

Here is an implementation of the normalizeColumn method:

   def normalizeColumn(self, columnNumber):
     """given a column number, normalize that column in self.data"""
     # first extract values to list
     col = [v[1][columnNumber] for v in self.data]
     median = self.getMedian(col)
     asd = self.getAbsoluteStandardDeviation(col, median)
     #print("Median: %f   ASD = %f" % (median, asd))     
     self.medianAndDeviation.append((median, asd))
     for v in self.data:
        v[1][columnNumber] = (v[1][columnNumber] - median) / asd

You can see I also store the median and absolute standard deviation of each column in the 
list medianAndDeviation.  I use this information when I want to use the classifier to 
predict the class of a new instance.  For example, suppose I want to predict what sport is 
played by Kelly Miller, who is 5 feet 10 inches and weighs 170. The first step is to convert her 
height and weight to Modified Standard Scores. That is, her original attribute vector is [70, 
140]. 

After processing the training data, the value of meanAndDeviation is

[(65.5, 5.95), (107.0, 33.65)]

meaning the data in the first column of the vector has a median of 65.5 and an absolute 
standard deviation of 5.95; the second column has a median of 107 and a deviation of 33.65.

I use this info to convert the original vector [70,140] to one containing Modified Standard 
Scores.  This computation for the first attribute is

 

mss = xi − !x
asd

= 70 − 65.5
5.95

= 4.5
5.95

= 0.7563
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and the second:

 
mss = xi − !x

asd
= 140 −107

33.65
= 33
33.65

= 0.98068

The python method that does this is:

    def normalizeVector(self, v):
        """We have stored the median and asd for each column.
        We now use them to normalize vector v"""
        vector = list(v)
        for i in range(len(vector)):
            (median, asd) = self.medianAndDeviation[i]
            vector[i] = (vector[i] - median) / asd
        return vector

The final bit of code to write is the part that predicts the class of a new instance—in our 
current example, the sport a person plays.  To determine the sport played by Kelly Miller, 
who is 5 feet 10 inches (70 inches) and weighs 170 we would call

    classifier.classify([70, 170])

In my code, classify is just a wrapper method for nearestNeighbor:

 def classify(self, itemVector):
   """Return class we think item Vector is in"""
   return(self.nearestNeighbor(self.normalizeVector(itemVector))[1][0])

s code it
 
Can you write the nearestNeighbor method? (for my solution, I wrote an 
additional method, manhattanDistance.)

Yet again, download the template classifyTemplate.py to write and test this method at 
guidetodatamining.com. 
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Solution

The implementation of the nearestNeighbor methods turns out to be very short.

def manhattan(self, vector1, vector2):
   """Computes the Manhattan distance."""
   return sum(map(lambda v1, v2: abs(v1 - v2), vector1, vector2))

def nearestNeighbor(self, itemVector):
   """return nearest neighbor to itemVector"""
   return min([ (self.manhattan(itemVector, item[1]), item) 
                for item in self.data])

That’s it!!!
We have written a nearest neighbor classifier in roughly 200 lines of Python.
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In the complete code which you can download from our website, I have included a function, 
test, which takes as arguments a training set file and a test set file and prints out how well 
the classifier performed. Here is how well the classifier did on our athlete data:

>>> test("athletesTrainingSet.txt", "athletesTestSet.txt")

-         Track  Aly Raisman!       Gymnastics! 62! 115

+    Basketball  Crystal Langhorne!Basketball! 74! 190

+    Basketball  Diana Taurasi! Basketball! 72! 163

<snip>

-         Track  Hannah Whelan! Gymnastics! 63! 117

+    Gymnastics  Jaycie Phelps! Gymnastics! 60! 97

80.00% correct

As you can see, the classifier was 80% accurate.  It performed perfectly on predicting 
basketball players but made four errors between track and gymnastics.

Irises Data Set  
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Sir Fisher was a remarkable person. 
He revolutionized statistics and 
Richard Dawkins called him “the 
greatest biologist since Darwin.”

I also tested our simple classifier on the Iris Data 
Set, arguably the most famous data set used in 
data mining. It was used by Sir Ronald Fisher 
back in the 1930s. The Iris Data Set consists of 50  
samples for each of three species of Irises (Iris 
Setosa, Iris Virginica, and Iris Versicolor). The 
data set includes measurements for two parts of 
the Iris’s flower: the sepal (the green covering of 
the flower bud) and the petals.



The Iris data set looks like this (species is what the classifier is trying to predict):
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All the data sets described in the book are available on the book’s website: 
guidetodatamining.com.  This allows you to download the data and 
experiment with the algorithm. Does normalizing the data improve or 
worsen the accuracy? Does having more data in the training set improve 
results? What effect does switching to Euclidean Distance have?

REMEMBER: Any learning that takes place happens in your brain, not mine. 
The more you interact with the material in the book, the more you will 
learn. 

Sepal 
length

Sepal 
width

Petal 
Length

Petal 
Width

Species

5.1 3.5 1.4 0.2 l.setosa

4.9 3.0 1.4 0.2 l setosa



There were 120 instances in the training set and 30 in the test set (none of the test set 
instances were in the training set).

How well did our classifier do on the Iris Data Set?  

>>> test('irisTrainingSet.data', 'irisTestSet.data')

93.33% correct

Again, a fairly impressive result considering how simple our classifier is. Interestingly, 
without normalizing the data the classifier is 100% accurate.  We will explore this 
normalization problem in more detail in a later chapter.

miles per gallon.
Finally, I tested our classifier on a modified version of another widely used data set, the Auto 
Miles Per Gallon data set from Carnegie Mellon University. It was initially used in the 1983 
American Statistical Association Exposition. The format of the data looks like this

mpg cylinders c.i. HP weight secs. 0-60 make/model

30 4 68 49 1867 19.5 fiat 128

45 4 90 48 2085 21.7 vw rabbit (diesel)

20 8 307 130 3504 12 chevrolet chevelle malibu

In the modified version of the data, we are trying to predict mpg, which is a discrete category 
(with values 10, 15, 20, 25, 30, 35, 40, and 45) using the attributes cylinders, displacement, 
horsepower, weight, and acceleration.
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>>> test('mpgTrainingSet.txt', 'mpgTestSet.txt')

56.00% correct

Without normalization the accuracy is 32%.
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There are 342 instances of 
cars in the training set and 50 
in the test set. If we just 
predicted the miles per gallon 
randomly, our accuracy would 
be 12.5%.

How can we improve the 
accuracy of our predictions?

Will improving the classification 
algorithm help? 

How about increasing the size of 
our training set? 

How about having more attributes.

Tune in to the next chapter to find 
out!



odds and ends
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Heads Up on Normalization

In this chapter we talked the importance 
of normalizing data. This is critical when 
attributes have drastically different 
scales (for example, income and age).  In 
order to get accurate distance 
measurements, we should rescale the 
attributes so they all have the same 
scale.

While most data miners use the term 
‘normalization’ to refer to this rescaling, 
others make a distinction between 
‘normaliza-tion’ and ‘standardization.’ For 
them, normalization means scaling values 
so they lie on a scale from 0 to 1. 
Standardization, on the other hand, 
refers to scaling an attribute so the 
average (mean or median) is 0, and other 
values are deviations from this average 
(standard deviation or absolute standard 
deviation). So for these data miners, 
Standard Score and Modified Standard 
Score are examples of standardization. 

Recall that one way to normalize an attribute on a scale between 0 and 1 is to 
find the minimum (min) and maximum (max) values of that attribute. The 
normalized value of a value is then

        
value−min
max−min     

Let’s compare the accuracy of a 
classifer  that uses this formula over 
one that uses the Modified Standard 



s code it

Can you modify our classifier code so that it normalizes the attributes 
using the formula on our previous page?

You can test its accuracy with our three data sets:
classifier builtclassifier builtclassifier built

data set using no 
normalization

using the formula 
on previous page

using Modified 
Standard Score

Athletes 80.00% ? 80.00%

Iris 100.00% ? 93.33%

MPG 32.00% ? 56.00%
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L You say normalize and I 

say standardize  N You say 

tomato and I say tomato M



     

s my results

Here are my results:

classifier builtclassifier builtclassifier built

data set using no 
normalization

using the formula 
on previous page

using Modified 
Standard Score

Athletes 80.00% 60.00% 80.00%

Iris 100.00% 83.33% 93.33%

MPG 32.00% 36.00% 56.00%

Hmm. These are disappointing results compared with using Modified Standard 
Score.
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It is fun playing with data sets and trying different methods.  
I obtained the Iris and MPG data sets from the UCI 
Machine Learning Repository (archive.ics.uci.edu/ml).
I encourage you to go there, download a data set or two, 
convert the data to match data format, and see how well our  
classifier does. 


