
Chapter 3: Collaborative filtering

Implicit ratings and
item based filtering

In chapter 2 we learned the basics of collaborative filtering and recommendation systems.
The algorithms described in that chapter are general purpose and could be used with a
variety of data. Users rated different items on a five or ten point scale and the algorithms
found other users who had similar ratings. As was mentioned, there is some evidence to
suggest users typically do not use this fine-grain distinction and instead tend to either give
the top rating or the lowest one. This all-or-nothing rating strategy can sometimes lead to
unusable results. In this chapter we will examine ways to fine tune collaborative filtering to
produce more accurate recommendations in an efficient manner.

Explicit ratings
One way of distinguishing types of user preferences is whether they are explicit or implicit.
Explicit ratings are when the user herself explicitly rates the item. One example of this is the
thumbs up / thumbs down rating on sites such as Pandora and YouTube.

And Amazon’s star system:

3-2

Implicit Ratings
For implicit ratings, we don't ask users to give any ratings—we just observe their behavior.
An example of this is keeping track of what a user clicks on in the online New York Times.

After observing what a user clicks on for a few
weeks you can imagine that we could develop a
reasonable profile of that user—she doesn't like
sports but seems to like technology news. If the
user clicks on the article “Fastest Way to Lose
Weight Discovered by Professional Trainers”
and the article “Slow and Steady: How to lose
weight and keep it off” perhaps she wishes to
lose weight. If she clicks on the iPhone ad, she
perhaps has an interest in that product. (By the
way, the term used when a user clicks on an ad is called 'click through'.)

Consider what information we can gain from recording what products a user clicks on in
Amazon. On your personalized Amazon front page this information is displayed:

COLLABORATIVE FILTERING

3-3

In this example, Amazon keeps track of what people click on. It knows, for example, that
people who viewed the book Jupiter’s Travels: Four years around the world on a Triumph
also viewed the DVD Long Way Round, which chronicles the actor Ewan McGregor as he
travels with his mate around the world on motorcycles. As can be seen in the Amazon
screenshot above, this information is used to display the items in the section “Customers who
viewed this also viewed.”

Another implicit rating is what the customer actually buys. Amazon also keeps track of this
information and uses it for their recommendations “Frequently Bought Together” and
“Customers Who Viewed This Item Also Bought”:

You would think that “Frequently Bought Together” would lead to some unusual
recommendations but this works surprisingly well.

3-4

Imagine what information a program can acquire by monitoring your behavior in iTunes.

First, there's the fact that I added a song to iTunes. That indicates minimally that I was
interested enough in the song to do so. Then there is the Play Count information. In the
image above, I've listened to Zee Avi's “Anchor” 52 times. That suggests that I like that song
(and in fact I do). If I have a song in my library for awhile and only listened to it once, that
might indicate that I don't like the song.

k brain calisthenics

Do you think having a user explicitly give a rating to an item is
more accurate?

Or do you think watching what a user buys or does (for example,
the play count) is a more accurate judge of what an individual
likes?

COLLABORATIVE FILTERING

3-5

Implicit Ratings:

Receipts for:
12 pack of Pabst Blue Ribbon beer, Whataburger, Ben and Jerry’s ice cream, pizza & donuts
DVD rental receipts: Marvel’s The Avengers, Resident Evil: Retribution, Ong Bak 3

3-6

Explicit Rating:
match.com bio:

I am a vegan. I enjoy a
fine Cabernet Sauvignon,
long walks in the woods,
reading Chekov by the
fire, French Films,
Saturdays at the art
museum, and Schumann
piano works.

Jim

what we found in
Jim’s pocket

Problems with explicit ratings

Problem 1: People are lazy and don't rate items.

First, users will typically not bother to rate items. I imagine
most of you have bought a substantial amount of stuff on
Amazon. I know I have. In the last month I bought a
microHelicopter, a 1TB hard drive, a USB-SATA converter,
a bunch of vitamins, two Kindle books (Murder City:
Ciudad Juarez and the Global Economy's New Killing
Fields and Ready Player One) and the physical books No
Place to Hide, Dr. Weil's 8 Weeks to Optimum Health,
Anticancer: A new way of life, and Rework. That's twelve
items. How many have I rated? Zero. I imagine most of
you are the same. You don't rate the items you buy.

I have a gimp knee. I like hiking in the mountains and as a
result own a number of trekking poles including some
cheap ones I bought on Amazon that have taken a lot of
abuse. Last year I flew to Austin for the 3 day Austin City
Limits music festival. I aggravated my knee injury dashing
from one flight to another and ended up going to REI to
buy a somewhat pricey REI branded trekking pole. It broke
in less than a day of walking on flat grass at a city park.
Here I own $10 poles that don't break during constant use
of hiking around in the Rockies and this pricey model
broke on flat ground. At the time of the festival, as I was
fuming, I planned to rate and write a review of the pole on
the REI site. Did I? No, I am too lazy. So even in this
extreme case I didn't rate the item. I think there are a lot of
lazy people like me. People in general are too lazy or
unmotivated to rate products.

COLLABORATIVE FILTERING

3-7

my slightly bent REI pole ➭

Problem 2: People may lie or give only partial information.

Let's say someone gets over that initial laziness and actually rates a product. That person may
lie. This is illustrated in the drawing a few pages back. They can lie directly—giving
inaccurate ratings or lie via omission—providing only partial information. Ben goes on a first
date with Ann to see the 2010 Cannes Film Festival Winner, a Thai film, Uncle Boonmee
Who Can Recall His Past Lives. They go with Ben's friend Dan and Dan's friend Clara. Ben
thinks it was the worst film he ever saw. All the others absolutely loved it and gushed about it
afterwards at the restaurant. It would not be surprising if Ben upped his rating of the film on
online rating sites that his friends might see or just not rate the film.

 Problem 3: People don't update their ratings.

Suppose I am motivated by writing this chapter to rate my Amazon purchases. That 1TB hard
drive works well—it's very speedy and also very quiet. I rate it five stars. That
microHelicopter is great. It is easy to fly and great fun and it survived multiple crashes. I rate
it five stars. A month goes by. The hard drive dies and as a result I lose all my downloaded
movies and music—a major bummer. The microHelicopter suddenly stops working—it looks
like the motor is fried. Now I think both products suck. Chances are pretty good that I will
not go to Amazon and update my ratings (laziness again). People still think I would rate both
5 stars.

3-8

Consider Mary, a college student. For some reason, she loves giving Amazon ratings. Ten
years ago she rated her favorite music albums with five stars: Giggling and Laughing: Silly
Songs for Kids, and Sesame Songs: Sing Yourself Silly! Her most recent ratings included 5
stars for Wolfgang Amadeus Phoenix and The Twilight Saga: Eclipse Soundtrack. Based on
these recent ratings she ends up being the closest neighbor to another college student Jen. It
would be odd to recommend Giggling and Laughing: Silly Songs for Kids to Jen. This is a
slightly different type of update problem than the one above, but a problem none-the-less.

k brain calisthenics

What do you think are the problems with implicit ratings?

(hint: think about the purchases you made on Amazon)

COLLABORATIVE FILTERING

3-9

A few pages ago I gave a list of items I bought at Amazon in the last month. It turns out I
bought two of those items for other people. I bought the anticancer book for my cousin and
the Rework book for my son. To see why this is a problem, let me come up with a more
compelling example by going further back in my purchase history. I bought some kettlebells
and the book Enter the Kettlebell! Secret of the Soviet Supermen as a gift for my son and a
Plush Chase Border Collie stuffed animal for my wife because our 14-year-old border collie
died. Using purchase history as an implicit rating of what a person likes, might lead you to
believe that people who like kettlebells, like stuffed animals, like microHelicopters, books on
anticancer, and the book Ready Player One. Amazon's purchase history can't distinguish
between purchases for myself and purchases I make as gifts. Stephen Baker describes a
related example:

 Baker 2008.60-61.

3-10

Figuring out that a certain white
blouse is business attire for a female
baby boomer is merely step one for the
computer. The more important task is to
build a profile of the shopper who buys
that blouse. Let's say it's my wife. She
goes to Macy's and buys four or five
items for herself. Underwear, pants, a
couple of blouses, maybe a belt. All of
the items fit that boomer profile. She's
coming into focus. Then, on the way out
she remembers to buy a birthday present
for our 16-year-old niece. Last time we
saw her, this girl was wearing black
clothing with a lot of writing on it, most
of it angry. She told us she was a goth.
So my wife goes into an “alternative”
section and—what the hell—picks up one
of those dog collars bristling with sharp

spikes.

If we are attempting to build a profile of a person—what a particular person likes—this dog
collar purchase is problematic.

Finally, consider a couple sharing a Netflix account. He likes action flicks with lots of
explosions and helicopters; she likes intellectual movies and romantic comedies. If we just
look at rental history, we build an odd profile of someone liking two very different things.

Recall that I said my purchase of the book Anticancer: A New Way of Life was as a gift to my
cousin. If we mine my purchase history a bit more we would see that I bought this book
before. In fact, in the last year I purchased multiple copies of three books. One can imagine
that I am making these multiple purchases not because I am losing the books, or that I am
losing my mind and forgetting that I read the books. The most rational reason, is that I liked
the books so much I am in a sense recommending these books to others by giving them as
gifts. So we can gain a substantial amount of information from a person's purchase history.

k brain calisthenics

What can we use as implicit data when we are observing a
person’s behavior at a computer? Before turning the page come
up with a list of possibilities

COLLABORATIVE FILTERING

3-11

Keep in mind that the algorithms described in chapter 2 can be used regardless of whether
the data is explicit or implicit.

The problems of success
You have a successful streaming music service with a built in recommendation system. What
could possibly go wrong?

Suppose you have one million users. Every time you want to make a recommendation for
someone you need to calculate one million distances (comparing that person to the 999,999
other people). If we are making multiple recommendations per second, the number of
calculations get extreme. Unless you throw a lot of iron at the problem the system will get
slow. To say this in a more formal way, latency can be a major drawback of neighbor-based

k Implicit Data:

Web pages: clicking on the link to a page
 time spent looking at a page
 repeated visits
 referring a page to others
 what a person watches on Hulu

Music players: what the person plays
 skipping tunes
 number of times a tune is played

This just scratches the surface!

3-12

recommendation systems. Fortunately, there is a solution.

 User-based filtering.
So far we have been doing user-based collaborative filtering. We are comparing a user with
every other user to find the closest matches. There are two main problems with this
approach:

1. Scalability. As we have just discussed, the computation increases as the number of
users increases. User-based methods work fine for thousands of users, but scalability gets
to be a problem when we have a million users.

2. Sparsity. Most recommendation systems have many users and many products but the
average user rates a small fraction of the total products. For example, Amazon carries
millions of books but the average user rates just a handful of books. Because of this the
algorithms we covered in chapter 2 may not find any nearest neighbors.

Because of these two issues it might be better to do what is called item-based filtering.

COLLABORATIVE FILTERING

3-13

Lots of iron:
a server farm

 Item-based filtering.
Suppose I have an algorithm that identifies products that are most similar to each other. For
example, such an algorithm might find that Phoenix's album Wolfgang Amadeus Phoenix is
similar to Passion Pit's album, Manners. If a user rates Wolfgang Amadeus Phoenix highly
we could recommend the similar album Manners. Note that this is different than what we
did for user-based filtering. In user-based filtering we had a user, found the most similar
person (or users) to that user and used the ratings of that similar person to make
recommendations. In item-based filtering, ahead of time we find the most similar items, and
combine that with a user's rating of items to generate a recommendation.

 Can you give me an example?
Suppose our streaming music site has m users and n bands, where the users rate bands. This
is shown in the following table. As before, the rows represent the users and the columns
represent bands.

Users ... Phoenix ... Passion
Pit

... n

1 Tamera Young 5

2 Jasmine Abbey 4

3 Arturo Alvarez 1 2

... ...

u Cecilia De La Cueva 5 5

... ...

m-1 Jessica Nguyen 4 5

m Jordyn Zamora 4

3-14

We would like to compute the similarity of Phoenix to Passion Pit. To do this we only use
users who rated both bands as indicated by the blue squares. If we were doing user-based
filtering we would determine the similarity between rows. For item-based filtering we are
determining the similarity between columns—in this case between the Phoenix and Passion
Pit columns.

COLLABORATIVE FILTERING

3-15

User-based filtering is also called memory based

collaborative filtering. Why? Because we need to

store all the ratings in order to make

recommendations.

Item-based filtering is also called model-based

collaborative filtering. Why? Because we don’t need

to store all the ratings. We build a model

representing how close every item is to every other

item!

Adjusted Cosine Similarity.
To compute the similarity between items we will use Cosine Similarity which was introduced
in chapter 2. We also already talked about grade inflation where a user gives higher ratings
than expected. To compensate for this grade inflation we will subtract the user's average
rating from each rating. This gives us the adjusted cosine similarity formula shown on the
following page.

3-16

I like Phoenix, I’ll give

them a ‘5’. I don’t like Passion

Pit, I’ll give them a ‘3’!
Phoenix is awesome, They’re

definitely a ‘4’. Passion Pit sucks.

A definite 0!

s(i, j) =
(Ru,i − Ru)(Ru, j − Ru)

u∈U
∑
(Ru,i − Ru)2

u∈U
∑ (Ru, j − Ru)2

u∈U
∑

This formula is from a seminal article in collaborative filtering: “Item-based collaborative
filtering recommendation algorithms” by Badrul Sarwar, George Karypis, Joseph Konstan,
and John Reidl (http://www.grouplens.org/papers/pdf/www10_sarwar.pdf)

Ru,i − Ru()
means the rating R user u gives to item i minus the average rating that user gave for all items
she rated. This gives us the normalized rating. In the formula above for s(i,j) we are finding
the similarity between items i and j. The numerator says that for every user who rated both
items multiply the normalized rating of those two items and sum the results. In the
denominator we sum the squares of all the normalized ratings for item i and then take the
square root of that result. We do the same for item j. And then we multiply those two
together.

To illustrate adjusted cosine similarity we will use the following data where five students
rated five musical artists.

Users average
rating

Kacey
Musgraves

Imagine
Dragons

Daft Punk Lorde Fall Out
Boy

David 3 5 4 1

Matt 3 4 4 1

Ben 4 3 3 1

Chris 4 4 4 3 1

Torri 5 4 5 3

The first thing to do is to compute each user’s average rating. That is easy! Go ahead and fill
that in.

COLLABORATIVE FILTERING

3-17

U is the set of all users who

rated both items i and j!

http://www.grouplens.org/papers/pdf/www10_sarwar.pdf
http://www.grouplens.org/papers/pdf/www10_sarwar.pdf

Users average
rating

Kacey
Musgraves

Imagine
Dragons

Daft Punk Lorde Fall Out
Boy

David 3.25 3 5 4 1

Matt 3.0 3 4 4 1

Ben 2.75 4 3 3 1

Chris 3.2 4 4 4 3 1

Tori 4.25 5 4 5 3

Now for each pair of musical artists we are going to compute their similarity. Let’s start with
Kacey Musgraves and Imagine Dragons. In the above table, I have circled the cases where a
user rated both bands. So the adjusted cosine similarity formula is

s(Musgraves,Dragons) =
(Ru,Musgraves − Ru)(Ru,Dragons − Ru)

u∈U
∑
(Ru,Musgraves − Ru)2

u∈U
∑ (Ru,Dragons − Ru)2

u∈U
∑

= 0.7650
2.765 0.765

= 0.7650
(1.6628)(0.8746)

= 0.7650
1.4543

= 0.5260

3-18

= (4 − 2.75)(3− 2.75)+ (4 − 3.2)(4 − 3.2)+ (5 − 4.25)(4 − 4.25)
(4 − 2.75)2 + (4 − 3.2)2 + (5 − 4.25)2 (3− 2.75)2 + (4 − 3.2)2 + (4 − 4.25)2

Ben’s
ratings

Chris’s
 ratings

Tori’s
ratings

So the similarity between Kacey Musgraves and Imagine Dragons is 0.5260. I have
computed some of the other similarities and entered them in this table:

Fall Out
Boy

Lorde Daft
Punk

Imagine
Dragons

Kacey Musgraves -0.9549 1.0000 0.5260

Imagine Dragons -0.3378 0.0075

Daft Punk -0.9570

Lorde -0.6934

Fall Out Boy

s sharpen your pencil

Compute the rest of the values in the table above!

COLLABORATIVE FILTERING

3-19

s sharpen your pencil - solution
Fall Out

Boy
Lorde Daft

Punk
Imagine
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.2525 0.0075

Daft Punk -0.9570 0.7841

Lorde -0.6934

To compute these values I wrote a small Python script:

def computeSimilarity(band1, band2, userRatings):
 averages = {}
 for (key, ratings) in userRatings.items():
 averages[key] = (float(sum(ratings.values()))
 / len(ratings.values()))

 num = 0 # numerator
 dem1 = 0 # first half of denominator
 dem2 = 0
 for (user, ratings) in userRatings.items():
 if band1 in ratings and band2 in ratings:
 avg = averages[user]
 num += (ratings[band1] - avg) * (ratings[band2] - avg)
 dem1 += (ratings[band1] - avg)**2
 dem2 += (ratings[band2] - avg)**2
 return num / (sqrt(dem1) * sqrt(dem2))

The format for the userRatings is shown on the following page!

3-20

Fall Out Boy Lorde Daft Punk Imagine
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.253 0.0075

Daft Punk -0.9570 0.7841

Lorde -0.6934

s sharpen your pencil - solution cont’d

users3 = {"David": {"Imagine Dragons": 3, "Daft Punk": 5,
 "Lorde": 4, "Fall Out Boy": 1},
 "Matt": {"Imagine Dragons": 3, "Daft Punk": 4,
 "Lorde": 4, "Fall Out Boy": 1},
 "Ben": {"Kacey Musgraves": 4, "Imagine Dragons": 3,
 "Lorde": 3, "Fall Out Boy": 1},
 "Chris": {"Kacey Musgraves": 4, "Imagine Dragons": 4,
 "Daft Punk": 4, "Lorde": 3, "Fall Out Boy": 1},
 "Tori": {"Kacey Musgraves": 5, "Imagine Dragons": 4,
 "Daft Punk": 5, "Fall Out Boy": 3}}

COLLABORATIVE FILTERING

3-21

Now that we have this nice
matrix of similarity values, it would
be dreamy if we could use it to
make predictions.! (I wonder how
well David will like Kacey

Musgraves?)

3-22

p(u,i) =
(Si,N × Ru,N)N∈similarTo(i)∑
(Si,N)N∈similarTo(i)∑

English, please!

Okay! p(u,i) means we are
going to predict the rating user

u will give item i.

so, P(David, Kacey
Musgraves) means our
prediction for the rating David
(the u in the equation) will give
Kacey Musgraves (the i in the
equation)

N is each of the
items that person u rated
that are similar to item i.
By ‘similar’ I mean that
there is a similarity score
between N and i in our
matrix!

COLLABORATIVE FILTERING

3-23

Si,N is the similarity
between i and N (from
the similarity matrix)

p(u,i) =
(Si,N × Ru,N)N∈similarTo(i)∑
(Si,N)N∈similarTo(i)∑

Ru,N is the rating
user u gave item N

Ru,N is We are trying to predict how well
user u will like item i (what rating user u will give
item i)

For this to work best, RN,i
should be a value in the range -1 to 1.

Our ratings are in the range 1
to 5. So we will need some numeric
Kung Fu to convert our ratings to the
-1 to 1 scale.

The equation to denormalize (go from the normalized rating to one in our original scale of 1-5
is:

Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR))+MinR

Let’s say someone rated Fall Out Boy a 2. Our normalized rating would be ...

NRu,N =
2(Ru,N −MinR)− (MaxR −MinR)

(MaxR −MinR)
= 2(2 −1)− (5 −1)

(5 −1)
= −2
4

= −0.5

and to go the other way ...

3-24

Our current music ratings range from 1 to 5. Let
MaxR be the maximum rating (5 in our case) and
MinR be the minimum rating (1). Ru,N is the
current rating user u gave item N. NRu,N is the
normalized rating (the new rating on the scale of
-1 to 1. The equation to normalize the rating is
NRu,N = 2(Ru,N −MinR)− (MaxR −MinR)(MaxR −MinR)

Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR))+MinR

= 1
2
((−0.5 +1)× 4)+1= 1

2
(2)+1= 1+1= 2

Okay. We now have that numeric Kung Fu under our belt!

The first thing we are going to do is normalize David’s ratings:

COLLABORATIVE FILTERING

3-25

David’s Ratings

Let’s see how this works with
an example!

We are trying to predict what
rating David would give Kacey
Musgraves.

Artist R NR

Imagine Dragons 3 0

Daft Punk 5 1

Lorde 4 0.5

Fall Out Boy 1 -1

We will learn more about

normalization in the next

chapter!

3-26

David rated Imagine Dragons, Daft Punk,
Lorde, and Fall Out Boy so we will use those in
our calculations to determine how well he will
like Kacey Musgraves.

And we will be using the normalized
ratings!

p(u,i) =
(Si,N × NRu,N)N∈similarTo(i)∑

(Si,N)N∈similarTo(i)∑ =

Imagine Dragons Daft Punk Lorde Fall Out Boy

Similarity Matrix

Fall Out
Boy

Lorde Daft Punk Imagine
Dragons

Kacey Musgraves -0.9549 0.3210 1.0000 0.5260

Imagine Dragons -0.3378 -0.2525 0.0075

Daft Punk -0.9570 0.7841

Lorde -0.6934

(.5260 × 0)+ (1.00 ×1)+ (.321× 0.5)+ (−.955 × −1)
0.5260 +1.000 + 0.321+ 0.955

= 0 +1+ 0.1605 + 0.955
2.802

= 2.1105
2.802

= 0.753

So we predict that David will rate Kacey Musgraves a 0.753 on a scale of -1 to 1. To get back to
our scale of 1 to 5 we need to denormalize:

Ru,N = 1
2
((NRu,N +1)× (MaxR −MinR))+MinR

= 1
2
((0.753+1)× 4)+1= 1

2
(7.012)+1= 3.506 +1= 4.506

So we predict that David will rate Kacey Musgraves a 4.506!

COLLABORATIVE FILTERING

3-27

Adjusted Cosine Similiarity is a Model-Based Colloborative

Filtering Method. As mentioned a few pages back, one advantage

of these methods compared to memory-based ones is that they

scale better. For large data sets, model-based methods tend to

be fast and require less memory.

Often people use rating scales differently. I may rate artists I

am not keen on a ‘3’ and artists I like a ‘4’. You may rate

artists you dislike a ‘1’ and artists you like a ‘5’. Adjusted

Cosine Similarity handles this problem by subtracting the

corresponding user’s average rating from each rating.

Slope One
Another popular algorithm for item-based collaborative filtering is Slope One. A major
advantage of Slope One is that it is simple and hence easy to implement. Slope One was
introduced in the paper “Slope One Predictors for Online Rating-Based Collaborative
Filtering” by Daniel Lemire and Anna Machlachlan (http://www.daniel-lemire.com/fr/
abstracts/SDM2005.html). This is an awesome paper and well worth the read.

Here's the basic idea in a minimalist nutshell. Suppose Amy gave a rating of 3 to PSY and a
rating of 4 to Whitney Houston. Ben gave a rating of 4 to PSY. We'd like to predict how Ben
would rate Whitney Houston. In table form the problem might look like this:

PSY Whitney Houston

Amy

Ben

3 4

4 ?

To guess what Ben might rate Whitney Houston we could reason as follows. Amy rated
Whitney one whole point better than PSY. We can predict then than Ben would rate Whitney
one point higher so we will predict that Ben will give her a '5'.

There are actually several Slope One algorithms. I will present the Weighted Slope One
algorithm. Remember that a major advantage is that the approach is simple. What I present
may look complex, but bear with me and things should become clear. You can consider Slope
One to be in two parts. First, ahead of time (in batch mode, in the middle of the night or
whenever) we are going to compute what is called the deviation between every pair of items.
In the simple example above, this step will determine that Whitney is rated 1 better than PSY.
Now we have a nice database of item deviations. In the second phase we actually make
predictions. A user comes along, Ben for example. He has never heard Whitney Houston and
we want to predict how he would rate her. Using all the bands he did rate along with our
database of deviations we are going to make a prediction.

3-28

http://www.daniel-lemire.com/fr/abstracts/SDM2005.html
http://www.daniel-lemire.com/fr/abstracts/SDM2005.html
http://www.daniel-lemire.com/fr/abstracts/SDM2005.html
http://www.daniel-lemire.com/fr/abstracts/SDM2005.html

The Broad Brush Picture

Part 1: Computing deviation
Let's make our previous example way more complex by adding two users and one band:

Taylor Swift PSY Whitney Houston

Amy

Ben

Clara

Daisy

4 3 4

5 2 ?

? 3.5 4

5 ? 3

The first step is to compute the deviations. The average deviation of an item i with respect to
item j is:

 devi, j =
ui − uj

card(Si, j (X))u∈Si , j (X)
∑

where card(S) is how many elements are in S and X is the entire set of all ratings. So

COLLABORATIVE FILTERING

3-29

Part 1 (done ahead of time)
Compute deviations between every
pair of items

Part 2
Use deviations to make
predictions

card(Sj,i(X)) is the number of people who have rated both j and i. Let's consider the deviation
of PSY with respect to Taylor Swift. In this case, card(Sj,i(X)) is 2—there are 2 people (Amy
and Ben) who rated both Taylor Swift and PSY. The uj – ui numerator is (that user’s rating
for Taylor Swift) minus (that user’s rating for PSY). So the deviation is:

 devswift ,psy =
(4 − 3)
2

+ (5 − 2)
2

= 1
2
+ 3
2
= 2

So the deviation from PSY to Taylor Swift is 2 meaning that on average users rated Taylor
Swift 2 better than PSY. What is the deviation from Taylor Swift to PSY?

 devpsy,swift =
(3− 4)
2

+ (2 − 5)
2

= − 1
2
+ − 3

2
= −2

s sharpen your pencil

Compute the rest of the values in this table:
Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2

-2 0

0

3-30

s sharpen your pencil - solution

Compute the rest of the values in this table:

Taylor Swift with respect to Whitney Houston:

 devswift ,houston =
(4 − 4)
2

+ (5 − 3)
2

= 0
2
+ 2
2
= 1

PSY with respect to Whitney Houston:

 devpsy,houston =
(3− 4)
2

+ (3.5 − 4)
2

= −1
2
+ −.5
2

= −.75

Taylor Swift PSY Whitney
Houston

Taylor Swift

PSY

Whitney
Houston

0 2 1

-2 0 -0.75

-1 0.75 0

COLLABORATIVE FILTERING

3-31

k brain calisthenics

Consider our streaming music site with one million users rating 200,000
artists. If we get a new user who rates 10 artists do we need to run the
algorithm again to generate the deviations of all 200k x 200k pairs or is
there an easier way?

(answer on next page)

3-32

k brain calisthenics

Consider our streaming music site with one million users rating 200,000 artists. If we
get a new user who rates 10 artists do we need to run the algorithm again to generate
the deviations of all 200k x 200k pairs or is there an easier way?

You don't need to run the algorithm on the entire dataset again.
That's the beauty of this method. For a given pair of items we only
need to keep track of the deviation and the total number of people
rating both items.

For example, suppose I have a deviation of Taylor Swift with respect
to PSY of 2 based on 9 people. I have a new person who rated
Taylor Swift 5 and PSY 1 the updated deviation would be

((9 * 2) + 4) / 10 = 2.2

COLLABORATIVE FILTERING

3-33

Part 2: Making predictions with Weighted Slope One
Okay, so now we have a big collection of deviations. How can we use that collection to make
predictions? As I mentioned, we are using Weighted Slope One or PwS1 --for Weighted Slope
One Prediction. The formula is:

 PwS1(u) j =
(devj ,i + ui

i∈S(u)−{ j}
∑)cj ,i

c j ,i
i∈S(u)−{ j}
∑

where

cj ,i = card(Sj ,i (χ))

PwS1(u)j means our prediction using Weighted Slope One of user u’s rating for item j. So, for
example PwS1(Ben)Whitney Houston means our prediction for what Ben would rate Whitney
Houston.

Let's say I am interested in answering that question: How might Ben rate Whitney Houston?

Let's dissect the numerator.

i∈S(u)−{ j}
∑

means for every musician that Ben has rated (except for Whitney Houston that is the {j} bit).

The entire numerator means for every musician i that Ben has rated (except for Whitney
Houston) we will look up the deviation of Whitney Houston to that musician and we will add
that to Ben's rating for musician i. We multiply that by the cardinality of that pair—the
number of people that rated both musicians (Whitney and musician i).

3-34

Let's step through this:

First, here are Ben’s ratings and our deviations table from before:

Taylor Swift PSY Whitney Houston

Ben 5 2 ?

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 1

-2 0 -0.75

-1 0.75 0

1. Ben has rated Taylor Swift and gave her a 5—that is the ui.

2. The deviation of Whitney Houston with respect to Taylor Swift is -1 —this is the devj,i.

3. devj,i + ui then is 4.

4. Looking at page 3-19 we see that there were two people (Amy and Daisy) that rated both
Taylor Swift and Whitney Houston so cj,i = 2

5. So (devj,i + ui) cj,i = 4 x 2 = 8

6. Ben has rated PSY and gave him a 2.

7. The deviation of Whitney Houston with respect to PSY is 0.75

8. devj,i + ui then is 2.75

9. Two people rated both Whitney Houston and PSY so (devj,i + ui) cj,i = 2.75 x 2 = 5.5

10. We sum up steps 5 and 9 to get 13.5 for the numerator

DENOMINATOR

11. Dissecting the denominator we get something like for every musician that Ben has rated,
sum the cardinalities of those musicians (how many people rated both that musician and

COLLABORATIVE FILTERING

3-35

Whitney Houston). So Ben has rated Taylor Swift and the cardinality of Taylor Swift and
Whitney Houston (that is, the total number of people that rated both of them) is 2. Ben
has rated PSY and his cardinality is also 2. So the denominator is 4.

12. So our prediction of how well Ben will like Whitney Houston is
13.5
4

= 3.375

3-36

Putting this into Python
I am going to extend the Python class developed in chapter 2. To save space I will not repeat
the code for the recommender class here—just refer back to it (and remember that you can
download the code at http://guidetodatamining.com). Recall that the data for that class was
in the following format:

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},

 "Ben": {"Taylor Swift": 5, "PSY": 2},

 "Clara": {"PSY": 3.5, "Whitney Houston": 4},

 "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}

First computing the deviations.

Again, the formula for computing deviations is

devi, j =
ui − u j

card(Si, j (X))u∈Si , j (X)
∑

So the input to our computeDeviations function should be data in the format of users2 above.
The output should be a representation of the following data:

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 (2) 1 (2)

-2 (2) 0 -0.75 (2)

-1 (2) 0.75 (2) 0

The number in the parentheses is the frequency (that is, the number of people that rated that
pair of musicians). So for each pair of musicians we need to record both the deviation and the
frequency.

COLLABORATIVE FILTERING

3-37

http://guidetodatamining.com/
http://guidetodatamining.com/

The pseudoCode for our function could be

def computeDeviations(self):
 for each i in bands:
 for each j in bands:
 if i ≠ j:
 compute dev(j,i)

That pseudocode looks pretty nice but as you can see, there is a disconnect between the data
format expected by the pseudocode and the format the data is really in (see users2 above as
an example). As code warriors we have two possibilities, either alter the format of the data,
or revise the psuedocode. I am going to opt for the second approach. This revised pseudocode
looks like

def computeDeviations(self):
 for each person in the data:
 get their ratings
" for each item & rating in that set of ratings:
" for each item2 & rating2 in that set of ratings:
" add the difference between the ratings to our computation

Let's construct the method step-by-step

Step 1:
def computeDeviations(self):
" # for each person in the data:
" # get their ratings
" for ratings in self.data.values():

Python dictionaries (aka hash tables) are key value pairs. Self.data is a dictionary. The
values method extracts just the values from the dictionary. Our data looks like

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},
 "Ben": {"Taylor Swift": 5, "PSY": 2},
 "Clara": {"PSY": 3.5, "Whitney Houston": 4},
 "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}

3-38

So the first time through the loop ratings = {"Taylor Swift": 4, "PSY": 3,
"Whitney Houston": 4}.

Step 2

def computeDeviations(self):
 # for each person in the data:
 # get their ratings
 for ratings in self.data.values():
 #for each item & rating in that set of ratings:
" for (item, rating) in ratings.items():
" self.frequencies.setdefault(item, {})
 self.deviations.setdefault(item, {})

In the recommender class init method I initialized self.frequencies and self.deviations to be
dictionaries.

 def __init__(self, data, k=1, metric='pearson', n=5):
 ...

 #
 # The following two variables are used for Slope One
 #
 self.frequencies = {}
 self.deviations = {}

The Python dictionary method setdefault takes 2 arguments: a key and an initialValue. This
method does the following. If the key does not exist in the dictionary it is added to the
dictionary with the value initialValue. Otherwise it returns the current value of the key.

COLLABORATIVE FILTERING

3-39

Step 3
def computeDeviations(self):
 # for each person in the data:
 # get their ratings
 for ratings in self.data.values():
 # for each item & rating in that set of ratings:
 for (item, rating) in ratings.items():
" self.frequencies.setdefault(item, {})
" " " " "
 self.deviations.setdefault(item, {})
 # for each item2 & rating2 in that set of ratings:
 for (item2, rating2) in ratings.items():
 if item != item2:
 # add the difference between the ratings
 # to our computation
 self.frequencies[item].setdefault(item2, 0)
 self.deviations[item].setdefault(item2, 0.0)
 self.frequencies[item][item2] += 1
 self.deviations[item][item2] += rating - rating2

The code added in this step computes the difference between two ratings and adds that to the
self.deviations running sum. Again, using the data:

{"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4}

when we are in the outer loop where item = “Taylor Swift” and rating = 4 and in the inner
loop where item2 = “PSY” and rating2 = 3 the last line of the code above adds 1 to
self.deviations[“Taylor Swift”][“PSY”].

Step 4:
Finally, we need to iterate through self.deviations to divide each deviation by its associated
frequency.

3-40

def computeDeviations(self):
 # for each person in the data:
 # get their ratings
 for ratings in self.data.values():
 # for each item & rating in that set of ratings:
 for (item, rating) in ratings.items():
 self.frequencies.setdefault(item, {})
 self.deviations.setdefault(item, {})
 # for each item2 & rating2 in that set of ratings:
 for (item2, rating2) in ratings.items():
 if item != item2:
 # add the difference between the ratings
 # to our computation
 self.frequencies[item].setdefault(item2, 0)
 self.deviations[item].setdefault(item2, 0.0)
 self.frequencies[item][item2] += 1
 self.deviations[item][item2] += rating - rating2

 for (item, ratings) in self.deviations.items():
 for item2 in ratings:
 ratings[item2] /= self.frequencies[item][item2]

That's it! Even with comments we implemented

devi, j =
ui − uj

card(Si, j (X))u∈Si , j (X)
∑

in only 18 lines of code. Incredible!

When I run this method on the data I have been using in this example:

users2 = {"Amy": {"Taylor Swift": 4, "PSY": 3, "Whitney Houston": 4},
 "Ben": {"Taylor Swift": 5, "PSY": 2},
 "Clara": {"PSY": 3.5, "Whitney Houston": 4},
 "Daisy": {"Taylor Swift": 5, "Whitney Houston": 3}}

COLLABORATIVE FILTERING

3-41

I get

>>> r = recommender(users2)
>>> r.computeDeviations()
>>> r.deviations
{'PSY': {'Taylor Swift': -2.0, 'Whitney Houston': -0.75}, 'Taylor
Swift': {'PSY': 2.0, 'Whitney Houston': 1.0}, 'Whitney Houston':
{'PSY': 0.75, 'Taylor Swift': -1.0}}

which is what we obtained when we computed this example by hand:

Taylor Swift PSY Whitney Houston

Taylor Swift

PSY

Whitney Houston

0 2 1

-2 0 -0.75

-1 0.75 0

3-42

Shout out to Bryan O’Sullivan and his blog teideal glic
deisbhéalach (serpentine.com/blog) which presented a
Python implementation of Slope One! The code
presented here is based on his work.

Weighted Slope 1: The recommendation component

Now it is time to code the recommendation component:

PwS1(u) j =
(devj ,i + ui

i∈S(u)−{ j}
∑)cj ,i

c j ,i
i∈S(u)−{ j}
∑

The big question I have is can we beat the 18 line implementation of computeDeviations.
First, let's parse that formula and put it into English and/or pseudocode. You try:

s sharpen your pencil

The formula in pseudo English:

COLLABORATIVE FILTERING

3-43

s sharpen your pencil - a solution

Here's my version of the formula:

I would like to make recommendations for a particular user. I have that
user's recommendations in the form

 {"Taylor Swift": 5, "PSY": 2}

For every userItem and userRating in the user's recommendations:
 For every diffItem that the user didn't rate (item2 ≠ item):
 add the deviation of diffItem with respect to userItem to
 the userRating of the userItem. Multiply that by the number of
 people that rated both userItem and diffItem.
 Add that to the running sum for diffItem
 Also keep a running sum for the number of people that
 rated diffItem.

Finally, for every diffItem that is in our results list, divide the total sum
of that item by the total frequency of that item and return the results.

3-44

And here is my conversion of that to Python:

 def slopeOneRecommendations(self, userRatings):
 recommendations = {}
 frequencies = {}
 # for every item and rating in the user's recommendations
 for (userItem, userRating) in userRatings.items():
 # for every item in our dataset that the user didn't rate
 for (diffItem, diffRatings) in self.deviations.items():
 if diffItem not in userRatings and \
 userItem in self.deviations[diffItem]:
 freq = self.frequencies[diffItem][userItem]
 recommendations.setdefault(diffItem, 0.0)
 frequencies.setdefault(diffItem, 0)
 # add to the running sum representing the numerator
 # of the formula
 recommendations[diffItem] += (diffRatings[userItem] +
 userRating) * freq
 # keep a running sum of the frequency of diffitem
 frequencies[diffItem] += freq

 recommendations = [(self.convertProductID2name(k),
 v / frequencies[k])
 for (k, v) in recommendations.items()]

 # finally sort and return
 recommendations.sort(key=lambda artistTuple: artistTuple[1],
 reverse = True)
 return recommendations

And here is a simple test of the complete Slope One implementation:

>>> r = recommender(users2)
>>> r.computeDeviations()
>>> g = users2['Ben']
>>> r.slopeOneRecommendations(g)
[('Whitney Houston', 3.375)]

COLLABORATIVE FILTERING

3-45

This results matches what we calculated by hand. So the recommendation part of the
algorithm weighs in at 18 lines. So in 36 lines of Python code we implemented the Slope One
algorithm. With Python you can write pretty compact code.

 MovieLens data set
Let's try out the Slope One recommender on a different dataset. The MovieLens dataset—
collected by the GroupLens Research Project at the University of Minnesota—contains user
ratings of movies. The data set is available for download at www.grouplens.org. The data set
is available in three sizes; for the demo here I am
using the smallest one which contains 100,000
ratings (1-5) from 943 users on 1,682 movies. I
wrote a short function that will import this data
into the recommender class.

Let's give it a try.

First, I will load the data into the Python recommender object:

>>> r = recommender(0)
>>> r.loadMovieLens('/Users/raz/Downloads/ml-100k/')
102625

I will be using the info from User 1. Just to peruse the data, I will look at the top 50 items the
user 1 rated:

>>> r.showUserTopItems('1', 50)
When Harry Met Sally... (1989)" 5
Jean de Florette (1986)"5
Godfather, The (1972)" 5
Big Night (1996)" 5
Manon of the Spring (Manon des sources) (1986)"5
Sling Blade (1996)" 5
Breaking the Waves (1996)" 5
Terminator 2: Judgment Day (1991)" 5
Searching for Bobby Fischer (1993)"5

3-46

Again, you can download
the code to this chapter at
www.guidetodatamining.com!

http://www.grouplens.org/
http://www.grouplens.org/

Maya Lin: A Strong Clear Vision (1994)" 5
Mighty Aphrodite (1995)"5
Bound (1996)" 5
Full Monty, The (1997)" 5
Chasing Amy (1997)" 5
Ridicule (1996)" 5
Nightmare Before Christmas, The (1993)" 5
Three Colors: Red (1994)" 5
Professional, The (1994)" 5
Priest (1994)" 5
...

User 1 rated all these movies a ‘5’!

Now I will do the first step of Slope One: computing the deviations:

>>> r.computeDeviations()

Finally, let's get recommendations for User 1:

>>> r.slopeOneRecommendations(r.data['1'])

[('Entertaining Angels: The Dorothy Day Story (1996)', 6.375), ('Aiqing
wansui (1994)', 5.849056603773585), ('Boys, Les (1997)',
5.644970414201183), ("Someone Else's America (1995)",
5.391304347826087), ('Santa with Muscles (1996)', 5.380952380952381),
('Great Day in Harlem, A (1994)', 5.275862068965517), ...

and user 25:

>>> r.slopeOneRecommendations(r.data['25'])

[('Aiqing wansui (1994)', 5.674418604651163), ('Boys, Les (1997)',
5.523076923076923), ('Star Kid (1997)', 5.25), ('Santa with Muscles
(1996)',

COLLABORATIVE FILTERING

3-47

(this takes about 50 seconds
to run on my laptop)

Congratulations on finishing chapter 3!!

There was some hard work in this chapter--dissecting

complex-looking formulas to gain an understanding of them

and then implementing them.

 Projects

1. See how well the Slope One recommender recommends movies for
you. Rate 10 movies or so (ones that are in the MovieLens dataset).
Does the recommender suggest movies you might like?

2. Implement Adjusted Cosine Similarity. Compare its performance to
Slope One.

3. (harder) I run out of memory (I have 8GB on my desktop) when I
try to run this on the Book Crossing Dataset. Recall that there are
270,000 books that are rated. So we would need a 270,000 x
270,000 dictionary to store the deviations. That's roughly 73 billion
dictionary entries. How sparse is this dictionary for the MovieLens
dataset? Alter the code so we can handle larger datasets.

3-48

